000824584 001__ 824584
000824584 005__ 20240711085640.0
000824584 0247_ $$2doi$$a10.1016/j.ssi.2016.10.013
000824584 0247_ $$2ISSN$$a0167-2738
000824584 0247_ $$2ISSN$$a1872-7689
000824584 0247_ $$2Handle$$a2128/13148
000824584 0247_ $$2WOS$$aWOS:000390072800001
000824584 037__ $$aFZJ-2016-07152
000824584 082__ $$a530
000824584 1001_ $$0P:(DE-HGF)0$$aGerstl, Matthias$$b0$$eCorresponding author
000824584 245__ $$aModel composite microelectrodes as a pathfinder for fully oxidic SOFC anodes
000824584 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000824584 3367_ $$2DRIVER$$aarticle
000824584 3367_ $$2DataCite$$aOutput Types/Journal article
000824584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481114548_4427
000824584 3367_ $$2BibTeX$$aARTICLE
000824584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824584 3367_ $$00$$2EndNote$$aJournal Article
000824584 520__ $$aAll-oxide model-composite electrodes were established consisting of a thin, micropatterned, electronically conducting oxide, which acts as a current collector, and a thin film of gadolinia-doped ceria, which is an electrochemically highly active mixed conductor under reducing atmospheres. The choice of the current collecting oxides was based on their electronic conductivity assessed by measurements of thin films using the van der Pauw method. Lanthanum and niobium doped strontium titanate as well as alumina doped zinc oxide, were investigated this way in a humid hydrogen atmosphere. Promising materials were incorporated as a current collector into model-composite microelectrodes and tested for their stability and efficiency in electrochemically activating the microelectrode. Alumina doped zinc oxide, while being an excellent electron conductor, showed severe stability problems at temperatures above 600 °C. However, a microelectrode with a current collector of niobium doped strontium titanate (Sr0·9Ti0.8Nb0·2O3) performed comparable to an electrode with a Pt current collector and, additionally, showed an improved tolerance to sulphur poisoning in a humid hydrogen atmosphere with 10 ppm of hydrogen sulphide.
000824584 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000824584 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000824584 588__ $$aDataset connected to CrossRef
000824584 7001_ $$0P:(DE-HGF)0$$aHutterer, Alexander$$b1
000824584 7001_ $$0P:(DE-HGF)0$$aFleig, Jürgen$$b2
000824584 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3$$ufzj
000824584 7001_ $$0P:(DE-HGF)0$$aOpitz, Alexander Karl$$b4
000824584 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2016.10.013$$gVol. 298, p. 1 - 8$$p1 - 8$$tSolid state ionics$$v298$$x0167-2738$$y2016
000824584 8564_ $$uhttps://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.pdf$$yOpenAccess
000824584 8564_ $$uhttps://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.gif?subformat=icon$$xicon$$yOpenAccess
000824584 8564_ $$uhttps://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824584 8564_ $$uhttps://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824584 8564_ $$uhttps://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824584 8564_ $$uhttps://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824584 909CO $$ooai:juser.fz-juelich.de:824584$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000824584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
000824584 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000824584 9141_ $$y2016
000824584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824584 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000824584 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015
000824584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824584 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824584 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824584 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824584 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824584 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824584 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824584 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824584 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000824584 9801_ $$aFullTexts
000824584 980__ $$ajournal
000824584 980__ $$aVDB
000824584 980__ $$aUNRESTRICTED
000824584 980__ $$aI:(DE-Juel1)IEK-1-20101013
000824584 981__ $$aI:(DE-Juel1)IMD-2-20101013