001     824584
005     20240711085640.0
024 7 _ |a 10.1016/j.ssi.2016.10.013
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a 2128/13148
|2 Handle
024 7 _ |a WOS:000390072800001
|2 WOS
037 _ _ |a FZJ-2016-07152
082 _ _ |a 530
100 1 _ |a Gerstl, Matthias
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Model composite microelectrodes as a pathfinder for fully oxidic SOFC anodes
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1481114548_4427
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a All-oxide model-composite electrodes were established consisting of a thin, micropatterned, electronically conducting oxide, which acts as a current collector, and a thin film of gadolinia-doped ceria, which is an electrochemically highly active mixed conductor under reducing atmospheres. The choice of the current collecting oxides was based on their electronic conductivity assessed by measurements of thin films using the van der Pauw method. Lanthanum and niobium doped strontium titanate as well as alumina doped zinc oxide, were investigated this way in a humid hydrogen atmosphere. Promising materials were incorporated as a current collector into model-composite microelectrodes and tested for their stability and efficiency in electrochemically activating the microelectrode. Alumina doped zinc oxide, while being an excellent electron conductor, showed severe stability problems at temperatures above 600 °C. However, a microelectrode with a current collector of niobium doped strontium titanate (Sr0·9Ti0.8Nb0·2O3) performed comparable to an electrode with a Pt current collector and, additionally, showed an improved tolerance to sulphur poisoning in a humid hydrogen atmosphere with 10 ppm of hydrogen sulphide.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hutterer, Alexander
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fleig, Jürgen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 3
|u fzj
700 1 _ |a Opitz, Alexander Karl
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.ssi.2016.10.013
|g Vol. 298, p. 1 - 8
|0 PERI:(DE-600)1500750-9
|p 1 - 8
|t Solid state ionics
|v 298
|y 2016
|x 0167-2738
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/824584/files/1-s2.0-S0167273816306166-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:824584
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21