000824589 001__ 824589
000824589 005__ 20210129225059.0
000824589 037__ $$aFZJ-2016-07156
000824589 041__ $$aEnglish
000824589 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
000824589 1112_ $$aIAS Symposium 2016$$cJülich$$d2016-12-05 - 2016-12-06$$wGermany
000824589 245__ $$aAdaptive Filters for Color Images: Median Filtering and its Extensions
000824589 260__ $$c2016
000824589 3367_ $$033$$2EndNote$$aConference Paper
000824589 3367_ $$2DataCite$$aOther
000824589 3367_ $$2BibTeX$$aINPROCEEDINGS
000824589 3367_ $$2DRIVER$$aconferenceObject
000824589 3367_ $$2ORCID$$aLECTURE_SPEECH
000824589 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1481094579_4424$$xAfter Call
000824589 520__ $$aIn this talk, the construction of structure-preserving denoising filters for color images is explained. This is based on a recently proposed transformation from the RGB color space to the space of symmetric $2\times2$ matrices that has already been used to transfer morphological operations such as dilation and erosion from matrix-valued data to color images (see [1]).The applicability of this framework is shown for the construction ofcolor-valued median filters. Additionally, spatial adaptivity is introducedinto this approach by morphological amoebas that offer excellent capabilities for structure-preserving filtering. Furthermore, color-valued amoeba M-smoothers as a generalization of the median-basedconcepts are defined. The experiments confirm that all these methods work wellwith color images. They demonstrate the potential of the new approach todefine color processing tools based on matrix field techniques (refer to [2]).[1] Burgeth, B., Kleefeld A. (2014) An approach to color-morphology based on Einstein addition and Loewner order, Pattern Recognition Letters, 47, 29-39.[2] Kleefeld, A. et al. (2015) Adaptive Filters for Color Images: Median Filtering and its Extensions, Lecture Notes in Computer Science, Springer, Berlin, 9016, 149-158.
000824589 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000824589 909CO $$ooai:juser.fz-juelich.de:824589$$pVDB
000824589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000824589 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000824589 9141_ $$y2016
000824589 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824589 920__ $$lyes
000824589 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000824589 980__ $$aconf
000824589 980__ $$aVDB
000824589 980__ $$aUNRESTRICTED
000824589 980__ $$aI:(DE-Juel1)JSC-20090406