000824618 001__ 824618
000824618 005__ 20240610121342.0
000824618 0247_ $$2doi$$a10.1038/srep38296
000824618 0247_ $$2Handle$$a2128/13149
000824618 0247_ $$2WOS$$aWOS:000389370600002
000824618 037__ $$aFZJ-2016-07181
000824618 082__ $$a000
000824618 1001_ $$0P:(DE-HGF)0$$aXu, Chencheng$$b0
000824618 245__ $$aFormation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO$_{3}$ thin films
000824618 260__ $$aLondon$$bNature Publishing Group$$c2016
000824618 3367_ $$2DRIVER$$aarticle
000824618 3367_ $$2DataCite$$aOutput Types/Journal article
000824618 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481114814_4425
000824618 3367_ $$2BibTeX$$aARTICLE
000824618 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824618 3367_ $$00$$2EndNote$$aJournal Article
000824618 520__ $$aWe elucidated the formation process for Ruddlesden-Popper-type defects during pulsed laser deposition of Sr rich SrTiO3 thin films by a combined analysis of in-situ atomic force microscopy, low energy electron diffraction and high resolution scanning transmission electron microscopy. At the early growth stage of 1.5 unit cells, the excess Sr results in the formation of SrO on the surface, resulting in a local termination change from TiO2 to SrO, thereby forming a Sr rich (2 × 2) surface reconstruction. With progressive SrTiO3 growth, islands with thermodynamically stable SrO rock-salt structure are formed, coexisting with TiO2 terminated islands. During the overgrowth of these thermodynamically stable islands, both lateral as well as vertical Ruddlesden-Popper-type anti-phase boundaries are formed, accommodating the Sr excess of the SrTiO3 film. We suggest the formation of thermodynamically stable SrO rock-salt structures as origin for the formation of Ruddlesden-Popper-type antiphase boundaries, which are as a result of kinetic limitations confined to certain regions on the surface.
000824618 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000824618 588__ $$aDataset connected to CrossRef
000824618 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b1$$ufzj
000824618 7001_ $$0P:(DE-HGF)0$$avan der Torren, Alexander J. H.$$b2
000824618 7001_ $$0P:(DE-HGF)0$$aAarts, Jan$$b3
000824618 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b4
000824618 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5$$eCorresponding author
000824618 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep38296$$gVol. 6, p. 38296 -$$p38296 -$$tScientific reports$$v6$$x2045-2322$$y2016
000824618 8564_ $$uhttps://juser.fz-juelich.de/record/824618/files/srep38296.pdf$$yOpenAccess
000824618 8564_ $$uhttps://juser.fz-juelich.de/record/824618/files/srep38296.gif?subformat=icon$$xicon$$yOpenAccess
000824618 8564_ $$uhttps://juser.fz-juelich.de/record/824618/files/srep38296.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824618 8564_ $$uhttps://juser.fz-juelich.de/record/824618/files/srep38296.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824618 8564_ $$uhttps://juser.fz-juelich.de/record/824618/files/srep38296.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824618 8564_ $$uhttps://juser.fz-juelich.de/record/824618/files/srep38296.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824618 8767_ $$82676009509$$92016-11-14$$d2016-11-22$$eAPC$$jZahlung erfolgt$$pSREP-16-33822B
000824618 909CO $$ooai:juser.fz-juelich.de:824618$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000824618 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824618 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000824618 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000824618 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000824618 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000824618 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000824618 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000824618 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000824618 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824618 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824618 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824618 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824618 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824618 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824618 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824618 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824618 9141_ $$y2016
000824618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000824618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b1$$kFZJ
000824618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b4$$kFZJ
000824618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
000824618 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000824618 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000824618 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000824618 9801_ $$aFullTexts
000824618 980__ $$ajournal
000824618 980__ $$aVDB
000824618 980__ $$aUNRESTRICTED
000824618 980__ $$aI:(DE-Juel1)PGI-7-20110106
000824618 980__ $$aI:(DE-Juel1)PGI-5-20110106
000824618 980__ $$aAPC
000824618 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000824618 981__ $$aI:(DE-Juel1)PGI-5-20110106