001     824682
005     20240711092256.0
024 7 _ |a 10.1016/j.surfcoat.2015.12.066
|2 doi
024 7 _ |a WOS:000371549200003
|2 WOS
037 _ _ |a FZJ-2016-07240
082 _ _ |a 620
100 1 _ |a Pillai, Rishi
|0 P:(DE-Juel1)156565
|b 0
|e Corresponding author
245 _ _ |a Carbides in an Aluminised Single Crystal Superalloy: Trancing the Source of Carbon
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1481206707_21512
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Single crystal Ni-base superalloys contain marginal amounts of carbon and as a consequence, diffusion coatings on these superalloys are generally expected to result in carbide free interdiffusion zones (IDZ) containing intermetallic precipitates. The experimentally observed presence of carbides in the IDZ of the aluminised (CVD) single crystal SC2000 led to a thorough investigation of the source of carbon as well as the precipitate phases occurring in the coating and in the IDZ. Scanning electron microscopy (SEM) combined with energy- and wavelength-dispersive X-ray spectroscopy (EDX/WDX) was employed to characterise the aluminised superalloy specimens. Average concentration profiles were determined by glow discharge optical emission spectroscopy (GDOES). Phases were then identified by X-Ray diffraction (XRD) and electron backscatter diffraction (EBSD). The carbides in the interdiffusion zone were found to be of the type M6C/M12C. By aluminising specimens of SC2000 with different thicknesses, the available carbon reservoir for the precipitation of carbides was varied. The amount of carbides in the IDZ after coating decreased with decreasing thickness of the substrate specimen. Hence it could be confirmed that carbon indeed diffused from the substrate to the coating/substrate interface and did not originate from the service environment.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
700 1 _ |a Chyrkin, Anton
|0 P:(DE-Juel1)129701
|b 1
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 2
700 1 _ |a Nowak, Wojciech
|0 P:(DE-Juel1)144141
|b 3
700 1 _ |a Zheng, N.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kliewe, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Quadakkers, Willem J.
|0 P:(DE-Juel1)129782
|b 6
773 _ _ |a 10.1016/j.surfcoat.2015.12.066
|0 PERI:(DE-600)1502240-7
|p 15-24
|t Surface and coatings technology
|v 288
|y 2016
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/824682/files/1-s2.0-S0257897215304965-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/824682/files/1-s2.0-S0257897215304965-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/824682/files/1-s2.0-S0257897215304965-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/824682/files/1-s2.0-S0257897215304965-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/824682/files/1-s2.0-S0257897215304965-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/824682/files/1-s2.0-S0257897215304965-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:824682
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156565
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129701
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21