000824687 001__ 824687
000824687 005__ 20240711092256.0
000824687 0247_ $$2doi$$a10.1007/s11669-015-0444-9
000824687 0247_ $$2WOS$$aWOS:000372172100012
000824687 037__ $$aFZJ-2016-07245
000824687 082__ $$a540
000824687 1001_ $$0P:(DE-Juel1)129701$$aChyrkin, Anton$$b0$$eCorresponding author
000824687 245__ $$aModelling Interdiffusion Processes in CMSX-10/Ni Difusion Couple
000824687 260__ $$aBoston, Mass.$$bSpringer$$c2016
000824687 3367_ $$2DRIVER$$aarticle
000824687 3367_ $$2DataCite$$aOutput Types/Journal article
000824687 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481207694_21514
000824687 3367_ $$2BibTeX$$aARTICLE
000824687 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824687 3367_ $$00$$2EndNote$$aJournal Article
000824687 520__ $$aA diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni3Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.
000824687 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000824687 7001_ $$0P:(DE-HGF)0$$aEpishin, A.$$b1
000824687 7001_ $$0P:(DE-Juel1)156565$$aPillai, Rishi$$b2
000824687 7001_ $$0P:(DE-HGF)0$$aLink, T.$$b3
000824687 7001_ $$0P:(DE-HGF)0$$aNolze, G.$$b4
000824687 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b5
000824687 773__ $$0PERI:(DE-600)2552809-9$$a10.1007/s11669-015-0444-9$$n2$$p201-211$$tJournal of phase equilibria and diffusion$$v37$$x1547-7037$$y2016
000824687 8564_ $$uhttps://juser.fz-juelich.de/record/824687/files/art_10.1007_s11669-015-0444-9.pdf$$yRestricted
000824687 8564_ $$uhttps://juser.fz-juelich.de/record/824687/files/art_10.1007_s11669-015-0444-9.gif?subformat=icon$$xicon$$yRestricted
000824687 8564_ $$uhttps://juser.fz-juelich.de/record/824687/files/art_10.1007_s11669-015-0444-9.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824687 8564_ $$uhttps://juser.fz-juelich.de/record/824687/files/art_10.1007_s11669-015-0444-9.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824687 8564_ $$uhttps://juser.fz-juelich.de/record/824687/files/art_10.1007_s11669-015-0444-9.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824687 8564_ $$uhttps://juser.fz-juelich.de/record/824687/files/art_10.1007_s11669-015-0444-9.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824687 909CO $$ooai:juser.fz-juelich.de:824687$$pVDB
000824687 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824687 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824687 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHASE EQUILIB DIFF : 2015
000824687 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824687 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824687 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824687 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824687 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824687 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824687 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824687 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824687 9141_ $$y2016
000824687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129701$$aForschungszentrum Jülich$$b0$$kFZJ
000824687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156565$$aForschungszentrum Jülich$$b2$$kFZJ
000824687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b5$$kFZJ
000824687 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000824687 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000824687 980__ $$ajournal
000824687 980__ $$aVDB
000824687 980__ $$aUNRESTRICTED
000824687 980__ $$aI:(DE-Juel1)IEK-2-20101013
000824687 981__ $$aI:(DE-Juel1)IMD-1-20101013