000824690 001__ 824690
000824690 005__ 20240711092225.0
000824690 0247_ $$2doi$$a10.1007/s11085-016-9653-9
000824690 0247_ $$2ISSN$$a0030-770X
000824690 0247_ $$2ISSN$$a1573-4889
000824690 0247_ $$2WOS$$aWOS:000393748800002
000824690 037__ $$aFZJ-2016-07248
000824690 082__ $$a540
000824690 1001_ $$0P:(DE-Juel1)156492$$aDuan, R.$$b0
000824690 245__ $$aPredicting Oxidation-Limited Lifetime of Thin-Walled Components of NiCrW Alloy 230
000824690 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2017
000824690 3367_ $$2DRIVER$$aarticle
000824690 3367_ $$2DataCite$$aOutput Types/Journal article
000824690 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485420124_32138
000824690 3367_ $$2BibTeX$$aARTICLE
000824690 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824690 3367_ $$00$$2EndNote$$aJournal Article
000824690 520__ $$aUsing alloy 230 as an example, a generalized oxidation lifetime model for chromia-forming Ni-base wrought alloys is proposed, which captures the most important damaging oxidation effects relevant for component design: wall thickness loss, scale spallation, and the occurrence of breakaway oxidation. For deriving input parameters and for verification of the model approach, alloy 230 specimens with different thicknesses were exposed for different times at temperatures in the range 950–1050 °C in static air. The studies focused on thin specimens (0.2–0.5 mm) to obtain data for critical subscale depletion processes resulting in breakaway oxidation within reasonably achievable test times up to 3000 h. The oxidation kinetics and oxidation-induced subscale microstructural changes were determined by combining gravimetric data with results from scanning electron microscopy with energy dispersive X-ray spectroscopy. The modeling of the scale spallation and re-formation was based on the NASA cyclic oxidation spallation program, while a new model was developed to describe accelerated oxidation occurring after longer exposure times in the thinnest specimens. The calculated oxidation data were combined with the reservoir model equation, by means of which the relation between the consumption and the remaining concentration of Cr in the alloy was established as a function of temperature and specimen thickness. Based on this approach, a generalized lifetime diagram is proposed, in which wall thickness loss is plotted as a function of time, initial specimen thickness, and temperature. The time to reach a critical Cr level at the scale/alloy interface of 10 wt% is also indicated in the diagrams.
000824690 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000824690 588__ $$aDataset connected to CrossRef
000824690 7001_ $$0P:(DE-Juel1)139042$$aJalowicka, A.$$b1$$eCorresponding author$$ufzj
000824690 7001_ $$0P:(DE-HGF)0$$aUnocic, K.$$b2
000824690 7001_ $$0P:(DE-HGF)0$$aPint, B. A.$$b3
000824690 7001_ $$0P:(DE-Juel1)129727$$aHuczkowski, P.$$b4$$ufzj
000824690 7001_ $$0P:(DE-Juel1)129701$$aChyrkin, A.$$b5
000824690 7001_ $$0P:(DE-Juel1)145209$$aGrüner, D.$$b6$$ufzj
000824690 7001_ $$0P:(DE-Juel1)156565$$aPillai, R.$$b7$$ufzj
000824690 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b8
000824690 773__ $$0PERI:(DE-600)2018581-9$$a10.1007/s11085-016-9653-9$$n1$$p11-38$$tOxidation of metals$$v87$$x1573-4889$$y2017
000824690 8564_ $$uhttps://juser.fz-juelich.de/record/824690/files/art_10.1007_s11085-016-9653-9.pdf$$yRestricted
000824690 8564_ $$uhttps://juser.fz-juelich.de/record/824690/files/art_10.1007_s11085-016-9653-9.gif?subformat=icon$$xicon$$yRestricted
000824690 8564_ $$uhttps://juser.fz-juelich.de/record/824690/files/art_10.1007_s11085-016-9653-9.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824690 8564_ $$uhttps://juser.fz-juelich.de/record/824690/files/art_10.1007_s11085-016-9653-9.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824690 8564_ $$uhttps://juser.fz-juelich.de/record/824690/files/art_10.1007_s11085-016-9653-9.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824690 8564_ $$uhttps://juser.fz-juelich.de/record/824690/files/art_10.1007_s11085-016-9653-9.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824690 909CO $$ooai:juser.fz-juelich.de:824690$$pVDB
000824690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b8$$kFZJ
000824690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129727$$aForschungszentrum Jülich$$b4$$kFZJ
000824690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b6$$kFZJ
000824690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156565$$aForschungszentrum Jülich$$b7$$kFZJ
000824690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b8$$kFZJ
000824690 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000824690 9141_ $$y2017
000824690 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824690 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824690 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOXID MET : 2015
000824690 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824690 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824690 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824690 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824690 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824690 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824690 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824690 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824690 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000824690 980__ $$ajournal
000824690 980__ $$aVDB
000824690 980__ $$aI:(DE-Juel1)IEK-2-20101013
000824690 980__ $$aUNRESTRICTED
000824690 981__ $$aI:(DE-Juel1)IMD-1-20101013