000824696 001__ 824696
000824696 005__ 20240711092257.0
000824696 0247_ $$2doi$$a10.1016/j.surfcoat.2016.08.079
000824696 0247_ $$2ISSN$$a0257-8972
000824696 0247_ $$2ISSN$$a1879-3347
000824696 0247_ $$2WOS$$aWOS:000402356100014
000824696 037__ $$aFZJ-2016-07254
000824696 082__ $$a620
000824696 1001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b0$$eCorresponding author
000824696 245__ $$aImpact of Processing Conditions and Feedstock Characteristics on Thermally Sprayed MCrAlY Bondcoat Properties
000824696 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000824696 3367_ $$2DRIVER$$aarticle
000824696 3367_ $$2DataCite$$aOutput Types/Journal article
000824696 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494509747_10087
000824696 3367_ $$2BibTeX$$aARTICLE
000824696 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824696 3367_ $$00$$2EndNote$$aJournal Article
000824696 520__ $$aOne of the options to manufacture MCrAlY bondcoats (M = Co, Ni) for thermal barrier coating systems is High Velocity Oxy-Fuel spraying (HVOF). In this work, particle diagnostics were applied to investigate the impact of processing conditions and feedstock characteristics on the relevant bondcoat properties. The results showed that compromises must be made on the oxygen/fuel ratio, spray distance, and particle size distribution to strike a balance between low oxidation and dense microstructures.These limitations initiated the development of the High Velocity Atmospheric Plasma Spray process (HV-APS) as a further alternative process. In this work, HV-APS process parameters were developed for a three cathode torch in combination with a 5 mm diameter high speed nozzle. A one-dimensional calculation of the expansion through this nozzle to atmospheric pressure yielded supersonic conditions with a Mach number of 1.84. The calculated plasma temperatures at the nozzle exit and in the expanded jet are 8400 K and slightly above 5200 K, respectively, which is low compared to conventional APS processes.A very fine powder with a median particle size of 18 μm was identified to be most suitable. Although the spray conditions were relatively cold, reasonable deposition efficiencies up to 61% and rather dense coatings were achieved using this feedstock. The as-sprayed porosity was ≈ 2% which was reduced by the subsequent vacuum heat treatment to < 1%. The oxygen content determined by chemical analysis for a sample sprayed at a spray distance of 100 mm was 0.41 ± 0.04 wt%.Moreover, reference samples were manufactured by Low Pressure Plasma Spraying (LPPS). The oxidation behavior was compared in isothermal and cyclic oxidation tests. The oxidation rates of the HV-APS coatings were found to be significantly lower than those of LPPS coatings. The thermally grown oxide scale showed less yttrium incorporation and better adherence in case of HV-APS. The latter is suggested to be related to a unique new distribution of Y-rich nano-sized oxide precipitates. The cyclic oxidation test confirmed the better oxidation resistance of the HV-APS coatings.
000824696 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000824696 588__ $$aDataset connected to CrossRef
000824696 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b1$$ufzj
000824696 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b2$$ufzj
000824696 7001_ $$0P:(DE-Juel1)145343$$aHejrani, Elham$$b3$$ufzj
000824696 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, Dmitry$$b4$$ufzj
000824696 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b5
000824696 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2016.08.079$$gp. S025789721630843X$$p114 -121$$tSurface and coatings technology$$v318$$x0257-8972$$y2017
000824696 8564_ $$uhttps://juser.fz-juelich.de/record/824696/files/1-s2.0-S025789721630843X-main.pdf$$yRestricted
000824696 8564_ $$uhttps://juser.fz-juelich.de/record/824696/files/1-s2.0-S025789721630843X-main.gif?subformat=icon$$xicon$$yRestricted
000824696 8564_ $$uhttps://juser.fz-juelich.de/record/824696/files/1-s2.0-S025789721630843X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824696 8564_ $$uhttps://juser.fz-juelich.de/record/824696/files/1-s2.0-S025789721630843X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824696 8564_ $$uhttps://juser.fz-juelich.de/record/824696/files/1-s2.0-S025789721630843X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824696 8564_ $$uhttps://juser.fz-juelich.de/record/824696/files/1-s2.0-S025789721630843X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824696 909CO $$ooai:juser.fz-juelich.de:824696$$pVDB
000824696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b0$$kFZJ
000824696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b1$$kFZJ
000824696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000824696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145343$$aForschungszentrum Jülich$$b3$$kFZJ
000824696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b4$$kFZJ
000824696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b5$$kFZJ
000824696 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000824696 9141_ $$y2017
000824696 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824696 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824696 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2015
000824696 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824696 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824696 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824696 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824696 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824696 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824696 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824696 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824696 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824696 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000824696 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000824696 980__ $$ajournal
000824696 980__ $$aVDB
000824696 980__ $$aI:(DE-Juel1)IEK-1-20101013
000824696 980__ $$aI:(DE-Juel1)IEK-2-20101013
000824696 980__ $$aUNRESTRICTED
000824696 981__ $$aI:(DE-Juel1)IMD-1-20101013
000824696 981__ $$aI:(DE-Juel1)IMD-2-20101013
000824696 981__ $$aI:(DE-Juel1)IEK-2-20101013