001     824717
005     20220930130112.0
024 7 _ |a 10.1186/s12934-016-0604-6
|2 doi
024 7 _ |a 2128/13153
|2 Handle
024 7 _ |a WOS:000390285500002
|2 WOS
037 _ _ |a FZJ-2016-07275
082 _ _ |a 610
100 1 _ |a Hemmerich, Johannes
|0 P:(DE-Juel1)165723
|b 0
245 _ _ |a Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum
260 _ _ |a London
|c 2016
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1481265010_4371
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Technical bulk enzymes represent a huge market, and the extracellular production of such enzymes is favorable due to lowered cost for product recovery. Protein secretion can be achieved via general secretion (Sec) pathway. Specific sequences, signal peptides (SPs), are necessary to direct the target protein into the translocation machinery. For example, >150 Sec-specific SPs have been identified for Bacillus subtilis alone. As the best SP for a target protein of choice cannot be predicted a priori, screening of homologous SPs has been shown to be a powerful tool for different expression organisms. While SP libraries between closely related species were successfully applied to optimize recombinant protein secretion, this was not investigated for distantly related species. Therefore, in this study a Sec SP library from low-GC firmicutes B. subtilis is investigated to optimize protein secretion in high-GC actinobacterium Corynebacterium glutamicum using cutinase from Fusarium solani pisi as model protein. [...]
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rohe, Peter
|0 P:(DE-Juel1)129058
|b 1
700 1 _ |a Kleine, Britta
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jurischka, Sarah-Kristin
|0 P:(DE-Juel1)157758
|b 3
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 4
700 1 _ |a Freudl, Roland
|0 P:(DE-Juel1)128960
|b 5
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 6
|e Corresponding author
773 _ _ |a 10.1186/s12934-016-0604-6
|g Vol. 15, no. 1, p. 208
|0 PERI:(DE-600)2091377-1
|n 1
|p 208
|t Microbial cell factories
|v 15
|y 2016
|x 1475-2859
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824717/files/art_10.1186_s12934-016-0604-6.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824717/files/art_10.1186_s12934-016-0604-6.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824717/files/art_10.1186_s12934-016-0604-6.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824717/files/art_10.1186_s12934-016-0604-6.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824717/files/art_10.1186_s12934-016-0604-6.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/824717/files/art_10.1186_s12934-016-0604-6.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:824717
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157758
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128960
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROB CELL FACT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21