001     824770
005     20240712112832.0
024 7 _ |a 10.1149/2.1151702jes
|2 doi
024 7 _ |a 2128/13396
|2 Handle
024 7 _ |a WOS:000397850800137
|2 WOS
037 _ _ |a FZJ-2016-07325
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 0
|e Corresponding author
|u fzj
245 _ _ |a An advanced all Phosphate lithium-ion battery providing high electrochemical stability, high rate capability and long-term cycling performance
260 _ _ |a Pennington, NJ
|c 2017
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483952120_19249
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a POF-3: Electrochemical Storage
520 _ _ |a High rate capability and long-term cycling spindle-like LiTi2(PO4)3/C anode and needle-like Li3V2(PO4)3 cathode have been evaluated in half-cell, and combined to fabricate an advanced fast cyclable all phosphate lithium-ion battery. The electrode materials with well-defined morphology were prepared by a solvothermal reaction followed by annealing, delivering capacities of 115.0 and 118.1 mAh·g−1 at 25°C over 200 cycles at 0.5 C, respectively. For the full cell assembly, no prelithiation process is needed for the selected electrode pair due to their mutually matched capacity and stoichiometric amount of lithium-ions. The fabricated full cell, with an output voltage of more than 1.5 V, inherits a superior rate capability and cycling performance of its electrodes. A discharge capacity of 36 mAh·g−1 at 30 C (about 30% of the initial discharge capacity at 0.1 C) and a capacity retention of ∼35% at 5 C over 1000 cycles has been achieved. Furthermore, one of the most important reasons for the capacity fading in the full cell during long-term cycling is found to be a decomposition and structural degradation of Li3V2(PO4)3 cathode material.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Mertens, Andreas
|0 P:(DE-Juel1)166415
|b 1
|u fzj
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 2
|u fzj
700 1 _ |a Gao, Xin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aslanbas, Özgür
|0 P:(DE-Juel1)161361
|b 4
|u fzj
700 1 _ |a Mertens, Josef
|0 P:(DE-Juel1)130445
|b 5
|u fzj
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 6
|u fzj
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 7
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
|u fzj
773 _ _ |a 10.1149/2.1151702jes
|0 PERI:(DE-600)2002179-3
|n 2
|p A370-A379
|t Journal of the Electrochemical Society
|v 164
|y 2017
|x 0013-4651
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824770/files/J.%20Electrochem.%20Soc.-2017-Yu-A370-9.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824770/files/J.%20Electrochem.%20Soc.-2017-Yu-A370-9.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824770/files/J.%20Electrochem.%20Soc.-2017-Yu-A370-9.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824770/files/J.%20Electrochem.%20Soc.-2017-Yu-A370-9.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824770/files/J.%20Electrochem.%20Soc.-2017-Yu-A370-9.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/824770/files/J.%20Electrochem.%20Soc.-2017-Yu-A370-9.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:824770
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166415
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130445
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21