001     824780
005     20240712100905.0
024 7 _ |2 doi
|a 10.1002/2015RG000511
024 7 _ |2 ISSN
|a 0034-6853
024 7 _ |2 ISSN
|a 0096-1043
024 7 _ |2 ISSN
|a 1944-9208
024 7 _ |2 ISSN
|a 8755-1209
024 7 _ |2 WOS
|a WOS:000385716900002
024 7 _ |2 Handle
|a 2128/16078
024 7 _ |a altmetric:6304997
|2 altmetric
037 _ _ |a FZJ-2016-07335
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Kremser, Stefanie
|b 0
|e Corresponding author
245 _ _ |a Stratospheric aerosol-Observations, processes, and impact on climate
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512379294_12601
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfate matter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Thomason, Larry W.
|b 1
700 1 _ |0 P:(DE-Juel1)129170
|a von Hobe, Marc
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Hermann, Markus
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Deshler, Terry
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Timmreck, Claudia
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Toohey, Matthew
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Stenke, Andrea
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Schwarz, Joshua P.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Weigel, Ralf
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Fueglistaler, Stephan
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Prata, Fred J.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Vernier, Jean-Paul
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Schlager, Hans
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Barnes, John E.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Antuña-Marrero, Juan-Carlos
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Fairlie, Duncan
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Palm, Mathias
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Mahieu, Emmanuel
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Notholt, Justus
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Rex, Markus
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Bingen, Christine
|b 21
700 1 _ |0 P:(DE-HGF)0
|a Vanhellemont, Filip
|b 22
700 1 _ |0 P:(DE-HGF)0
|a Bourassa, Adam
|b 23
700 1 _ |0 0000-0003-3648-6893
|a Plane, John M. C.
|b 24
700 1 _ |0 P:(DE-HGF)0
|a Klocke, Daniel
|b 25
700 1 _ |0 P:(DE-HGF)0
|a Carn, Simon A.
|b 26
700 1 _ |0 P:(DE-HGF)0
|a Clarisse, Lieven
|b 27
700 1 _ |0 P:(DE-HGF)0
|a Trickl, Thomas
|b 28
700 1 _ |0 P:(DE-HGF)0
|a Neely, Ryan
|b 29
700 1 _ |0 P:(DE-HGF)0
|a James, Alexander D.
|b 30
700 1 _ |0 P:(DE-HGF)0
|a Rieger, Landon
|b 31
700 1 _ |0 P:(DE-HGF)0
|a Wilson, James C.
|b 32
700 1 _ |0 P:(DE-HGF)0
|a Meland, Brian
|b 33
773 _ _ |0 PERI:(DE-600)2035391-1
|a 10.1002/2015RG000511
|g Vol. 54, no. 2, p. 278 - 335
|n 2
|p 278 - 335
|t Reviews of geophysics
|v 54
|x 8755-1209
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/824780/files/Kremser_et_al-2016-Reviews_of_Geophysics.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824780/files/Kremser_et_al-2016-Reviews_of_Geophysics.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824780/files/Kremser_et_al-2016-Reviews_of_Geophysics.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824780/files/Kremser_et_al-2016-Reviews_of_Geophysics.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824780/files/Kremser_et_al-2016-Reviews_of_Geophysics.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824780/files/Kremser_et_al-2016-Reviews_of_Geophysics.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:824780
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129170
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 0000-0003-3648-6893
|a External Institute
|b 24
|k Extern
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b REV GEOPHYS : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b REV GEOPHYS : 2015
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21