000824782 001__ 824782
000824782 005__ 20240712101034.0
000824782 0247_ $$2doi$$a10.1002/kin.21033
000824782 0247_ $$2ISSN$$a0538-8066
000824782 0247_ $$2ISSN$$a1097-4601
000824782 0247_ $$2WOS$$aWOS:000386998900004
000824782 0247_ $$2altmetric$$aaltmetric:12220567
000824782 0247_ $$2Handle$$a2128/23335
000824782 037__ $$aFZJ-2016-07337
000824782 082__ $$a540
000824782 1001_ $$0P:(DE-Juel1)167140$$aVereecken, Luc$$b0$$eCorresponding author$$ufzj
000824782 245__ $$aTheoretical Study on the Formation of H- and O-Atoms, HONO, OH, NO, and NO2 from the Lowest Lying Singlet and Triplet States in Ortho -Nitrophenol Photolysis
000824782 260__ $$aNew York, NY$$bWiley$$c2016
000824782 3367_ $$2DRIVER$$aarticle
000824782 3367_ $$2DataCite$$aOutput Types/Journal article
000824782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481290707_4375
000824782 3367_ $$2BibTeX$$aARTICLE
000824782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824782 3367_ $$00$$2EndNote$$aJournal Article
000824782 520__ $$aThe photolysis of nitrophenols was proposed as a source of reactive radicals and NOx compounds in polluted air. The S0 singlet ground state and T1 first excited triplet state of nitrophenol were investigated to assess the energy dependence of the photofragmentation product distribution as a function of the reaction conditions, based on quantum chemical calculations at the G3SX//M06–2X/aug-cc-pVTZ level of theory combined with RRKM master equation calculations. On both potential energy surfaces, we find rapid isomerization with the aci-nitrophenol isomer, as well as pathways forming NO, NO2, OH, HONO, and H-, and O-atoms, extending earlier studies on the T1 state and in agreement with available work on other nitroaromatics. We find that accessing the lowest photofragmentation channel from the S0 ground state requires only 268 kJ/mol of activation energy, but at a pressure of 1 atm collisional energy loss dominates such that significant fragmentation only occurs at internal energies exceeding 550 kJ/mol, making this surface unimportant for atmospheric photolysis. Intersystem crossing to the T1 triplet state leads more readily to fragmentation, with dissociation occurring at energies of ∼450 kJ/mol above the singlet ground state even at 1 atm. The main product is found to be OH + nitrosophenoxy, followed by formation of hydroxyphenoxy + NO and phenyloxyl + HONO. The predictions are compared against available experimental data.
000824782 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000824782 588__ $$aDataset connected to CrossRef
000824782 7001_ $$0P:(DE-HGF)0$$aChakravarty, H. K.$$b1
000824782 7001_ $$0P:(DE-Juel1)2693$$aBohn, B.$$b2$$ufzj
000824782 7001_ $$0P:(DE-HGF)0$$aLelieveld, J.$$b3
000824782 773__ $$0PERI:(DE-600)1480875-4$$a10.1002/kin.21033$$gVol. 48, no. 12, p. 785 - 795$$n12$$p785 - 795$$tInternational journal of chemical kinetics$$v48$$x0538-8066$$y2016
000824782 8564_ $$uhttps://juser.fz-juelich.de/record/824782/files/Vereecken_ortho-nitrophenol.pdf$$yOpenAccess
000824782 8564_ $$uhttps://juser.fz-juelich.de/record/824782/files/Vereecken_ortho-nitrophenol_SI.pdf$$yOpenAccess
000824782 8564_ $$uhttps://juser.fz-juelich.de/record/824782/files/Vereecken_ortho-nitrophenol.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824782 8564_ $$uhttps://juser.fz-juelich.de/record/824782/files/Vereecken_ortho-nitrophenol_SI.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824782 909CO $$ooai:juser.fz-juelich.de:824782$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000824782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b0$$kFZJ
000824782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b2$$kFZJ
000824782 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000824782 9141_ $$y2016
000824782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824782 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CHEM KINET : 2015
000824782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824782 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824782 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824782 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824782 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824782 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824782 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824782 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824782 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824782 920__ $$lyes
000824782 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000824782 9801_ $$aFullTexts
000824782 980__ $$ajournal
000824782 980__ $$aVDB
000824782 980__ $$aUNRESTRICTED
000824782 980__ $$aI:(DE-Juel1)IEK-8-20101013
000824782 981__ $$aI:(DE-Juel1)ICE-3-20101013