000824840 001__ 824840
000824840 005__ 20210129225132.0
000824840 0247_ $$2doi$$a10.1088/0957-4484/27/17/175702
000824840 0247_ $$2ISSN$$a0957-4484
000824840 0247_ $$2ISSN$$a1361-6528
000824840 0247_ $$2WOS$$aWOS:000372797400017
000824840 037__ $$aFZJ-2016-07342
000824840 082__ $$a530
000824840 1001_ $$0P:(DE-HGF)0$$aKumar, D.$$b0
000824840 245__ $$aSize-dependent magnetic transitions in CoFe$_0.1$Cr$_1.9$O$_4$ nanoparticles studied by magnetic and neutron-polarization analysis
000824840 260__ $$aBristol$$bIOP Publ.$$c2016
000824840 3367_ $$2DRIVER$$aarticle
000824840 3367_ $$2DataCite$$aOutput Types/Journal article
000824840 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489843649_16128
000824840 3367_ $$2BibTeX$$aARTICLE
000824840 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824840 3367_ $$00$$2EndNote$$aJournal Article
000824840 520__ $$aMultiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as a paramagnetic to collinear and non-collinear ferrimagnetic state at the Curie temperature (T C) and spiral ordering temperature (T S) respectively and finally to a lock-in-transition temperature (T l). In this paper, the rich sequence of magnetic transitions in CoCr2O4 after mixing the octahedral site with 10% of iron are investigated by varying the size of the particle from 10 to 50 nm. With the increasing size, while the T C increases from 110 to 119 K which is higher than the T C (95 K) of pure CoCr2O4, the T S remains unaffected. In addition, a compensation of magnetization at 34 K and a lock-in transition at 10 K are also monitored in 50 nm particles. Further, we have examined the magnetic-ordering temperatures through neutron scattering using a polarized neutron beam along three orthogonal directions after separating the magnetic scattering from nuclear-coherent and spin-incoherent contributions. While a sharp long-range ferrimagnetic ordering down to 110 K and a short-range spiral ordering down to 50 K are obtained in 50 nm particles, in 10 nm particles, the para to ferrimagnetic transition is found to be continuous and spiral ordering is diffused in nature. Frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Neel–Arrhenius, Vogel–Fulcher and power law, while ruling out the canonical spin-glass, cluster-glass and interacting superparamagnetism, reveal that both particles show spin-glass behavior with a higher relaxation time in 10 nm particles than in 50 nm. The smaller spin flip time in 50 nm particles confirms that spin dynamics does not slow down on approaching the glass transition temperature (T g).
000824840 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000824840 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000824840 588__ $$aDataset connected to CrossRef
000824840 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000824840 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000824840 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x2
000824840 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000824840 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000824840 7001_ $$0P:(DE-HGF)0$$aGalivarapu, J. K.$$b1
000824840 7001_ $$0P:(DE-HGF)0$$aBanerjee, A.$$b2
000824840 7001_ $$0P:(DE-Juel1)141702$$aNemkovskiy, Kirill$$b3$$ufzj
000824840 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b4$$ufzj
000824840 7001_ $$0P:(DE-HGF)0$$aRath, Chandana$$b5$$eCorresponding author
000824840 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/27/17/175702$$gVol. 27, no. 17, p. 175702 -$$n17$$p175702 1-10$$tNanotechnology$$v27$$x1361-6528$$y2016
000824840 8564_ $$uhttps://juser.fz-juelich.de/record/824840/files/Kumar_2016_Nanotechnology_27_175702.pdf$$yRestricted
000824840 8564_ $$uhttps://juser.fz-juelich.de/record/824840/files/Kumar_2016_Nanotechnology_27_175702.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824840 909CO $$ooai:juser.fz-juelich.de:824840$$pVDB$$pVDB:MLZ
000824840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141702$$aForschungszentrum Jülich$$b3$$kFZJ
000824840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b4$$kFZJ
000824840 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000824840 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000824840 9141_ $$y2016
000824840 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824840 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824840 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824840 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824840 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2015
000824840 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824840 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824840 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824840 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824840 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824840 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824840 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824840 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000824840 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824840 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824840 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824840 920__ $$lno
000824840 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000824840 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000824840 980__ $$ajournal
000824840 980__ $$aVDB
000824840 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000824840 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000824840 980__ $$aUNRESTRICTED