000824905 001__ 824905 000824905 005__ 20210129225142.0 000824905 0247_ $$2doi$$a10.1007/978-3-319-33482-0_10 000824905 037__ $$aFZJ-2016-07407 000824905 1001_ $$0P:(DE-Juel1)161133$$aLiao, Weichen$$b0$$eCorresponding author 000824905 1112_ $$aTraffic and Granular Flow$$cDelft$$d2015-10-28 - 2015-10-30$$gTGF15$$wNeederlands 000824905 245__ $$aDetection of Steady State in Pedestrian Experiments 000824905 260__ $$aCham$$bSpringer International Publishing$$c2016 000824905 29510 $$aTraffic and Granular Flow '15 / Knoop, Victor L. (Editor), Chapter 10 ; ISBN: 978-3-319-33481-3 000824905 300__ $$a73 - 79 000824905 3367_ $$2ORCID$$aCONFERENCE_PAPER 000824905 3367_ $$033$$2EndNote$$aConference Paper 000824905 3367_ $$2BibTeX$$aINPROCEEDINGS 000824905 3367_ $$2DRIVER$$aconferenceObject 000824905 3367_ $$2DataCite$$aOutput Types/Conference Paper 000824905 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1481719417_12861 000824905 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000824905 520__ $$aInitial conditions could have strong influences on the dynamics of pedestrian experiments. Thus, a careful differentiation between transient state and steady state is important and necessary for a thorough study. In this contribution a modified CUSUM algorithm is proposed to automatically detect steady state from time series of pedestrian experiments. Major modifications on the statistics include introducing a step function to enhance the sensitivity, adding a boundary to limit the increase, and simplifying the calculation to improve the computational efficiency. Furthermore, the threshold of the detection parameter is calibrated using an autoregressive process. By testing the robustness, the modified CUSUM algorithm is able to reproduce identical steady state with different references. Its application well contributes to accurate analysis and reliable comparison of experimental results. 000824905 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000824905 588__ $$aDataset connected to CrossRef Book 000824905 7001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b1 000824905 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b2 000824905 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b3 000824905 7001_ $$0P:(DE-HGF)0$$aZheng, Xiaoping$$b4 000824905 7001_ $$0P:(DE-HGF)0$$aZhao, Ying$$b5 000824905 773__ $$a10.1007/978-3-319-33482-0_10 000824905 909CO $$ooai:juser.fz-juelich.de:824905$$pVDB 000824905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161133$$aForschungszentrum Jülich$$b0$$kFZJ 000824905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159135$$aForschungszentrum Jülich$$b1$$kFZJ 000824905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b2$$kFZJ 000824905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b3$$kFZJ 000824905 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000824905 9141_ $$y2016 000824905 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000824905 920__ $$lyes 000824905 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000824905 980__ $$acontrib 000824905 980__ $$aVDB 000824905 980__ $$aUNRESTRICTED 000824905 980__ $$acontb 000824905 980__ $$aI:(DE-Juel1)JSC-20090406