001     824905
005     20210129225142.0
024 7 _ |a 10.1007/978-3-319-33482-0_10
|2 doi
037 _ _ |a FZJ-2016-07407
100 1 _ |a Liao, Weichen
|0 P:(DE-Juel1)161133
|b 0
|e Corresponding author
111 2 _ |a Traffic and Granular Flow
|g TGF15
|c Delft
|d 2015-10-28 - 2015-10-30
|w Neederlands
245 _ _ |a Detection of Steady State in Pedestrian Experiments
260 _ _ |a Cham
|c 2016
|b Springer International Publishing
295 1 0 |a Traffic and Granular Flow '15 / Knoop, Victor L. (Editor), Chapter 10 ; ISBN: 978-3-319-33481-3
300 _ _ |a 73 - 79
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1481719417_12861
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Initial conditions could have strong influences on the dynamics of pedestrian experiments. Thus, a careful differentiation between transient state and steady state is important and necessary for a thorough study. In this contribution a modified CUSUM algorithm is proposed to automatically detect steady state from time series of pedestrian experiments. Major modifications on the statistics include introducing a step function to enhance the sensitivity, adding a boundary to limit the increase, and simplifying the calculation to improve the computational efficiency. Furthermore, the threshold of the detection parameter is calibrated using an autoregressive process. By testing the robustness, the modified CUSUM algorithm is able to reproduce identical steady state with different references. Its application well contributes to accurate analysis and reliable comparison of experimental results.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |a Tordeux, Antoine
|0 P:(DE-Juel1)159135
|b 1
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 3
700 1 _ |a Zheng, Xiaoping
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhao, Ying
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1007/978-3-319-33482-0_10
909 C O |o oai:juser.fz-juelich.de:824905
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161133
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159135
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21