000824906 001__ 824906
000824906 005__ 20210129225142.0
000824906 0247_ $$2doi$$a10.1007/978-3-319-33482-0_22
000824906 037__ $$aFZJ-2016-07408
000824906 1001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b0$$eCorresponding author
000824906 1112_ $$aTraffic and Granular Flow$$cDelft$$d2015-10-28 - 2015-10-30$$gTGF15$$wNeederlands
000824906 245__ $$aA Force-Based Model to Reproduce Stop-and-Go Waves in Pedestrian Dynamics
000824906 260__ $$aCham$$bSpringer International Publishing$$c2016
000824906 29510 $$aTraffic and Granular Flow '15 / Knoop, Victor L. (Editor)   ; Cham : Springer International Publishing, 2016, Chapter 22 ; ISBN: 978-3-319-33481-3
000824906 300__ $$a169 175
000824906 3367_ $$2ORCID$$aCONFERENCE_PAPER
000824906 3367_ $$033$$2EndNote$$aConference Paper
000824906 3367_ $$2BibTeX$$aINPROCEEDINGS
000824906 3367_ $$2DRIVER$$aconferenceObject
000824906 3367_ $$2DataCite$$aOutput Types/Conference Paper
000824906 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1481719788_12860
000824906 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000824906 520__ $$aStop-and-go waves in single-file movement are a phenomenon that is observed empirically in pedestrian dynamics. It manifests itself by the co-existence of two phases: moving and stopping pedestrians. We show analytically based on a simplified one-dimensional scenario that under some conditions the system can have unstable homogeneous solutions. Hence, oscillations in the trajectories and instabilities emerge during simulations. To our knowledge there exists no force-based model which is collision- and oscillation-free and meanwhile can reproduce phase separation. We develop a new force-based model for pedestrian dynamics able to reproduce qualitatively the phenomenon of phase separation. We investigate analytically the stability condition of the model and define regimes of parameter values where phase separation can be observed. We show by means of simulations that the predefined conditions lead in fact to the expected behaviour and validate our model with respect to empirical findings.
000824906 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000824906 588__ $$aDataset connected to CrossRef Book
000824906 7001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b1$$ufzj
000824906 7001_ $$0P:(DE-HGF)0$$aSchadschneider, Andreas$$b2
000824906 773__ $$a10.1007/978-3-319-33482-0_22
000824906 909CO $$ooai:juser.fz-juelich.de:824906$$pVDB
000824906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
000824906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159135$$aForschungszentrum Jülich$$b1$$kFZJ
000824906 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000824906 9141_ $$y2016
000824906 920__ $$lyes
000824906 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000824906 980__ $$acontrib
000824906 980__ $$aVDB
000824906 980__ $$acontb
000824906 980__ $$aI:(DE-Juel1)JSC-20090406
000824906 980__ $$aUNRESTRICTED