000824910 001__ 824910 000824910 005__ 20210129225143.0 000824910 0247_ $$2doi$$a10.1007/978-3-319-33482-0_32 000824910 037__ $$aFZJ-2016-07412 000824910 1001_ $$0P:(DE-Juel1)171479$$aAndresen, Erik$$b0$$eCorresponding author 000824910 1112_ $$aTraffic and Granular Flow$$cDelft$$d2015-10-28 - 2015-10-30$$gTGF15$$wNeederlands 000824910 245__ $$aWayfinding and Cognitive Maps for Pedestrian Models 000824910 260__ $$aCham$$bSpringer International Publishing$$c2016 000824910 29510 $$aTraffic and Granular Flow '15 / Knoop, Victor L. (Editor) ; Cham : Springer International Publishing, 2016, Chapter 32 ; ISBN: 978-3-319-33481-3 000824910 300__ $$a249-256 000824910 3367_ $$2ORCID$$aCONFERENCE_PAPER 000824910 3367_ $$033$$2EndNote$$aConference Paper 000824910 3367_ $$2BibTeX$$aINPROCEEDINGS 000824910 3367_ $$2DRIVER$$aconferenceObject 000824910 3367_ $$2DataCite$$aOutput Types/Conference Paper 000824910 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1481719870_12858 000824910 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000824910 520__ $$aUsually, routing models in pedestrian dynamics assume that agents have fulfilled and global knowledge about the building’s structure. However, they neglect the fact that pedestrians possess no or only parts of information about their position relative to final exits and possible routes leading to them. To get a more realistic description we introduce the systematics of gathering and using spatial knowledge. A new wayfinding model for pedestrian dynamics is proposed. The model defines for every pedestrian an individual knowledge representation implying inaccuracies and uncertainties. In addition, knowledge-driven search strategies are introduced. The presented concept is tested on a fictive example scenario. 000824910 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000824910 588__ $$aDataset connected to CrossRef Book 000824910 7001_ $$0P:(DE-Juel1)161429$$aHaensel, David$$b1$$ufzj 000824910 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2$$ufzj 000824910 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b3$$ufzj 000824910 773__ $$a10.1007/978-3-319-33482-0_32 000824910 909CO $$ooai:juser.fz-juelich.de:824910$$pVDB 000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171479$$aForschungszentrum Jülich$$b2$$kFZJ 000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161429$$aForschungszentrum Jülich$$b1$$kFZJ 000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ 000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b3$$kFZJ 000824910 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000824910 9141_ $$y2016 000824910 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000824910 920__ $$lyes 000824910 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000824910 980__ $$acontrib 000824910 980__ $$aVDB 000824910 980__ $$aUNRESTRICTED 000824910 980__ $$acontb 000824910 980__ $$aI:(DE-Juel1)JSC-20090406