000824910 001__ 824910
000824910 005__ 20210129225143.0
000824910 0247_ $$2doi$$a10.1007/978-3-319-33482-0_32
000824910 037__ $$aFZJ-2016-07412
000824910 1001_ $$0P:(DE-Juel1)171479$$aAndresen, Erik$$b0$$eCorresponding author
000824910 1112_ $$aTraffic and Granular Flow$$cDelft$$d2015-10-28 - 2015-10-30$$gTGF15$$wNeederlands
000824910 245__ $$aWayfinding and Cognitive Maps for Pedestrian Models
000824910 260__ $$aCham$$bSpringer International Publishing$$c2016
000824910 29510 $$aTraffic and Granular Flow '15 / Knoop, Victor L. (Editor)   ; Cham : Springer International Publishing, 2016, Chapter 32 ; ISBN: 978-3-319-33481-3
000824910 300__ $$a249-256
000824910 3367_ $$2ORCID$$aCONFERENCE_PAPER
000824910 3367_ $$033$$2EndNote$$aConference Paper
000824910 3367_ $$2BibTeX$$aINPROCEEDINGS
000824910 3367_ $$2DRIVER$$aconferenceObject
000824910 3367_ $$2DataCite$$aOutput Types/Conference Paper
000824910 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1481719870_12858
000824910 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000824910 520__ $$aUsually, routing models in pedestrian dynamics assume that agents have fulfilled and global knowledge about the building’s structure. However, they neglect the fact that pedestrians possess no or only parts of information about their position relative to final exits and possible routes leading to them. To get a more realistic description we introduce the systematics of gathering and using spatial knowledge. A new wayfinding model for pedestrian dynamics is proposed. The model defines for every pedestrian an individual knowledge representation implying inaccuracies and uncertainties. In addition, knowledge-driven search strategies are introduced. The presented concept is tested on a fictive example scenario.
000824910 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000824910 588__ $$aDataset connected to CrossRef Book
000824910 7001_ $$0P:(DE-Juel1)161429$$aHaensel, David$$b1$$ufzj
000824910 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2$$ufzj
000824910 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b3$$ufzj
000824910 773__ $$a10.1007/978-3-319-33482-0_32
000824910 909CO $$ooai:juser.fz-juelich.de:824910$$pVDB
000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171479$$aForschungszentrum Jülich$$b2$$kFZJ
000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161429$$aForschungszentrum Jülich$$b1$$kFZJ
000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
000824910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b3$$kFZJ
000824910 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000824910 9141_ $$y2016
000824910 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824910 920__ $$lyes
000824910 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000824910 980__ $$acontrib
000824910 980__ $$aVDB
000824910 980__ $$aUNRESTRICTED
000824910 980__ $$acontb
000824910 980__ $$aI:(DE-Juel1)JSC-20090406