001     824910
005     20210129225143.0
024 7 _ |a 10.1007/978-3-319-33482-0_32
|2 doi
037 _ _ |a FZJ-2016-07412
100 1 _ |a Andresen, Erik
|0 P:(DE-Juel1)171479
|b 0
|e Corresponding author
111 2 _ |a Traffic and Granular Flow
|g TGF15
|c Delft
|d 2015-10-28 - 2015-10-30
|w Neederlands
245 _ _ |a Wayfinding and Cognitive Maps for Pedestrian Models
260 _ _ |a Cham
|c 2016
|b Springer International Publishing
295 1 0 |a Traffic and Granular Flow '15 / Knoop, Victor L. (Editor) ; Cham : Springer International Publishing, 2016, Chapter 32 ; ISBN: 978-3-319-33481-3
300 _ _ |a 249-256
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1481719870_12858
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Usually, routing models in pedestrian dynamics assume that agents have fulfilled and global knowledge about the building’s structure. However, they neglect the fact that pedestrians possess no or only parts of information about their position relative to final exits and possible routes leading to them. To get a more realistic description we introduce the systematics of gathering and using spatial knowledge. A new wayfinding model for pedestrian dynamics is proposed. The model defines for every pedestrian an individual knowledge representation implying inaccuracies and uncertainties. In addition, knowledge-driven search strategies are introduced. The presented concept is tested on a fictive example scenario.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |a Haensel, David
|0 P:(DE-Juel1)161429
|b 1
|u fzj
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
|u fzj
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 3
|u fzj
773 _ _ |a 10.1007/978-3-319-33482-0_32
909 C O |o oai:juser.fz-juelich.de:824910
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161429
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21