001     824919
005     20210129225144.0
020 _ _ |a 978-3-319-50861-0 (print)
020 _ _ |a 978-3-319-50862-7 (electronic)
024 7 _ |a 10.1007/978-3-319-50862-7_3
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a altmetric:21831789
|2 altmetric
037 _ _ |a FZJ-2016-07420
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Lührs, Anna
|0 P:(DE-Juel1)132291
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Workshop on Brain-Inspired Computing
|g BrainComp 2015
|c Cetraro
|d 2015-07-06 - 2015-07-10
|w Italy
245 _ _ |a Towards Large-Scale Fiber Orientation Models of the Brain – Automation and Parallelization of a Seeded Region Growing Segmentation of High-Resolution Brain Section Images
260 _ _ |a Cham
|c 2016
|b Springer International Publishing
295 1 0 |a Brain-Inspired Computing
300 _ _ |a 28 - 42
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1563262675_3032
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 10087
520 _ _ |a To understand the microscopical organization of the human brain including cellular and fiber architectures, it is a necessary prerequisite to build virtual models of the brain on a sound biological basis. 3D Polarized Light Imaging (3D-PLI) provides a window to analyze the fiber architecture and the fibers’ intricate inter-connections at microscopic resolutions. Considering the complexity and the pure size of the human brain with its nearly 86 billion nerve cells, 3D-PLI is challenging with respect to data handling and analysis in the TeraByte to PetaByte ranges, and inevitably requires supercomputing facilities. Parallelization and automation of image processing steps open up new perspectives to speed up the generation of new high resolution models of the human brain to provide groundbreaking insights into the brain’s three-dimensional micro architecture. Here, we will describe the implementation and the performance of a parallelized semi-automated seeded region growing algorithm used to classify tissue and background components in up to one million 3D-PLI images acquired from an entire human brain. This algorithm represents an important element of a complex UNICORE-based analysis workflow ultimately aiming at the extraction of spatial fiber orientations from 3D-PLI measurements.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|f FP7-ICT-2013-FET-F
|x 3
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 4
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Bücker, Oliver
|0 P:(DE-Juel1)132074
|b 1
|u fzj
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 2
|u fzj
773 _ _ |a 10.1007/978-3-319-50862-7_3
856 4 _ |u https://juser.fz-juelich.de/record/824919/files/BrainComp2015-Luehrs.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824919/files/BrainComp2015-Luehrs.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824919/files/BrainComp2015-Luehrs.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824919/files/BrainComp2015-Luehrs.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824919/files/BrainComp2015-Luehrs.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/824919/files/BrainComp2015-Luehrs.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:824919
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132291
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132074
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131632
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21