%0 Journal Article %A Görne, Arno L. %A George, Janine %A van Leusen, Jan %A Dück, Gerald %A Jacobs, Philipp %A Kumar, Naveen %A Dronskowski, Richard %T Ammonothermal Synthesis, Crystal Structure, and Properties of the Ytterbium(II) and Ytterbium(III) Amides and the First Two Rare-Earth-Metal Guanidinates, YbC(NH)$_{3}$ and Yb(CN$_{3}$ H$_{4}$)$_{3}$ %J Inorganic chemistry %V 55 %N 12 %@ 1520-510X %C Washington, DC %I American Chemical Society %M FZJ-2016-07439 %P 6161 - 6168 %D 2016 %X We report the oxidation-controlled synthesis of the ytterbium amides Yb(NH2)2 and Yb(NH2)3 and the first rare-earth-metal guanidinates YbC(NH)3 and Yb(CN3H4)3 from liquid ammonia. For Yb(NH2)2, we present experimental atomic displacement parameters from powder X-ray diffraction (PXRD) and density functional theory (DFT)-derived hydrogen positions for the first time. For Yb(NH2)3, the indexing proposal based on PXRD arrives at R3̅, a = 6.2477(2) Å, c = 17.132(1) Å, V = 579.15(4) Å3, and Z = 6. The oxidation-controlled synthesis was also applied to make the first rare-earth guanidinates, namely, the doubly deprotonated YbC(NH)3 and the singly deprotonated Yb(CN3H4)3. YbC(NH)3 is isostructural with SrC(NH)3, as derived from PXRD (P63/m, a = 5.2596(2) Å, c = 6.6704(2) Å, V = 159.81(1) Å3, and Z = 2). Yb(CN3H4)3 crystallizes in a structure derived from the [ReO3] type, as studied by powder neutron diffraction (Pn3̅, a = 13.5307(3) Å, V = 2477.22(8) Å3, and Z = 8 at 10 K). Electrostatic and hydrogen-bonding interactions cooperate to stabilize the structure with wide and empty channels. The IR spectra of the guanidinates are compared with DFT-calculated phonon spectra to identify the vibrational modes. SQUID magnetometry shows that Yb(CN3H4)3 is a paramagnet with isolated Yb3+ (4f13) ions. A CONDON 2.0 fit was used to extract all relevant parameters. %F PUB:(DE-HGF)16 %9 Journal Article %U <Go to ISI:>//WOS:000378369900054 %$ pmid:27248288 %R 10.1021/acs.inorgchem.6b00736 %U https://juser.fz-juelich.de/record/824943