001     8250
005     20180208203817.0
024 7 _ |2 DOI
|a 10.1016/j.cpc.2009.09.016
024 7 _ |2 WOS
|a WOS:000273192100013
037 _ _ |a PreJuSER-8250
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |a Lazic, P.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB74498
245 _ _ |a JuNoLo – Jülich nonlocal code for parallel post-processing evaluation of vdW-DF correlation energy
260 _ _ |a Amsterdam
|b North Holland Publ. Co.
|c 2010
300 _ _ |a 371 - 379
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Computer Physics Communications
|x 0010-4655
|0 1439
|y 2
|v 181
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post-DFT calculation approach. i.e. by applying the functional to the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N-2 where N is the number of points in which the density is defined, and a massively parallel calculation is welcome for a wider applicability of the new approach. In this article we present a code which accomplishes this goal.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Electronic structure
653 2 0 |2 Author
|a Density functional theory
653 2 0 |2 Author
|a Van der Waals interaction
653 2 0 |2 Author
|a Nonlocal correlation
700 1 _ |a Atodiresei, N.
|b 1
|u FZJ
|0 P:(DE-Juel1)130513
700 1 _ |a Alaei, M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Caciuc, V.
|b 3
|u FZJ
|0 P:(DE-Juel1)130583
700 1 _ |a Blügel, S.
|b 4
|u FZJ
|0 P:(DE-Juel1)130548
700 1 _ |a Brako, R.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.cpc.2009.09.016
|g Vol. 181, p. 371 - 379
|p 371 - 379
|q 181<371 - 379
|0 PERI:(DE-600)1466511-6
|t Computer physics communications
|v 181
|y 2010
|x 0010-4655
856 7 _ |u http://dx.doi.org/10.1016/j.cpc.2009.09.016
909 C O |o oai:juser.fz-juelich.de:8250
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1346
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)117158
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB881
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21