000825002 001__ 825002
000825002 005__ 20210129225201.0
000825002 0247_ $$2doi$$a10.1021/acs.nanolett.5b05071
000825002 0247_ $$2ISSN$$a1530-6984
000825002 0247_ $$2ISSN$$a1530-6992
000825002 0247_ $$2WOS$$aWOS:000370215200093
000825002 037__ $$aFZJ-2016-07498
000825002 082__ $$a540
000825002 1001_ $$0P:(DE-HGF)0$$aSchöneberg, J.$$b0$$eCorresponding author
000825002 245__ $$aBallistic Anisotropic Magnetoresistance of Single-Atom Contacts
000825002 260__ $$aWashington, DC$$bACS Publ.$$c2016
000825002 3367_ $$2DRIVER$$aarticle
000825002 3367_ $$2DataCite$$aOutput Types/Journal article
000825002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481719094_12863
000825002 3367_ $$2BibTeX$$aARTICLE
000825002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825002 3367_ $$00$$2EndNote$$aJournal Article
000825002 520__ $$aAnisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin–orbit coupling. This work shows that engineering the AMR at the single atom level is feasible
000825002 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000825002 588__ $$aDataset connected to CrossRef
000825002 7001_ $$0P:(DE-Juel1)164159$$aOtte, F.$$b1$$eCorresponding author
000825002 7001_ $$0P:(DE-HGF)0$$aNéel, N.$$b2
000825002 7001_ $$0P:(DE-HGF)0$$aWeismann, A.$$b3
000825002 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Y.$$b4
000825002 7001_ $$0P:(DE-HGF)0$$aKröger, J.$$b5
000825002 7001_ $$0P:(DE-HGF)0$$aBerndt, R.$$b6
000825002 7001_ $$0P:(DE-Juel1)130703$$aHeinze, S.$$b7
000825002 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.5b05071$$gVol. 16, no. 2, p. 1450 - 1454$$n2$$p1450 - 1454$$tNano letters$$v16$$x1530-6992$$y2016
000825002 8564_ $$uhttps://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.pdf$$yRestricted
000825002 8564_ $$uhttps://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.gif?subformat=icon$$xicon$$yRestricted
000825002 8564_ $$uhttps://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825002 8564_ $$uhttps://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825002 8564_ $$uhttps://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825002 8564_ $$uhttps://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825002 909CO $$ooai:juser.fz-juelich.de:825002$$pVDB
000825002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b4$$kFZJ
000825002 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000825002 9141_ $$y2016
000825002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825002 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015
000825002 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015
000825002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825002 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825002 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825002 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825002 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825002 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825002 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825002 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000825002 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000825002 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000825002 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000825002 980__ $$ajournal
000825002 980__ $$aVDB
000825002 980__ $$aUNRESTRICTED
000825002 980__ $$aI:(DE-Juel1)IAS-1-20090406
000825002 980__ $$aI:(DE-Juel1)PGI-1-20110106
000825002 980__ $$aI:(DE-82)080009_20140620
000825002 980__ $$aI:(DE-82)080012_20140620
000825002 981__ $$aI:(DE-Juel1)PGI-1-20110106