Hauptseite > Publikationsdatenbank > Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts > print |
001 | 825002 | ||
005 | 20210129225201.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.5b05071 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a WOS:000370215200093 |2 WOS |
037 | _ | _ | |a FZJ-2016-07498 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Schöneberg, J. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts |
260 | _ | _ | |a Washington, DC |c 2016 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1481719094_12863 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin–orbit coupling. This work shows that engineering the AMR at the single atom level is feasible |
536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Otte, F. |0 P:(DE-Juel1)164159 |b 1 |e Corresponding author |
700 | 1 | _ | |a Néel, N. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Weismann, A. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mokrousov, Y. |0 P:(DE-Juel1)130848 |b 4 |
700 | 1 | _ | |a Kröger, J. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Berndt, R. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Heinze, S. |0 P:(DE-Juel1)130703 |b 7 |
773 | _ | _ | |a 10.1021/acs.nanolett.5b05071 |g Vol. 16, no. 2, p. 1450 - 1454 |0 PERI:(DE-600)2048866-X |n 2 |p 1450 - 1454 |t Nano letters |v 16 |y 2016 |x 1530-6992 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.pdf |y Restricted |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.gif?subformat=icon |y Restricted |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.jpg?subformat=icon-1440 |y Restricted |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.jpg?subformat=icon-180 |y Restricted |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.jpg?subformat=icon-640 |y Restricted |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/825002/files/acs.nanolett.5b05071.pdf?subformat=pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:825002 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130848 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2015 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
981 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|