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Attosecond streaking spectroscopy of solids provides direct observation of the dynamics of electron excitation

and transport through the surface. We demonstrate the crucial role of the exciting field in electron propagation

and establish that the lattice scattering of the outgoing electron during the optical pumping leads to the wave

packet moving faster than with the group velocity and faster than the free electron. We solve the time-dependent

Schrödinger equation for a model of laser-assisted photoemission, with inelastic scattering treated as electron

absorption and alternatively by means of random collisions. For a weak lattice scattering, the phenomenological

result that the photoelectron moves with the group velocity dE/d�k and traverses on average the distance equal

to the mean-free path is proved to hold even at very short traveling times. This offers a novel interpretation of the

delay time in streaking experiment and sheds new light on tunneling in optoelectronic devices.

DOI: 10.1103/PhysRevB.94.195434

Transport properties of electron wave packets underlie the

functioning of electronic devices and are an important factor

in photoemission spectroscopies and electron diffraction tech-

niques [1]. Still, little is known about how a photoexcited Bloch

wave packet emerges out of the initial state and develops on a

time scale comparable to its lifetime. Such ultrafast excitations

are probed by time-resolved photoelectron spectroscopies,

such as interference of two-photon transitions [2] or laser

streaking [3–10]. In the latter technique, a subfemtosecond

time resolution is achieved by mapping time to energy using

a strong laser field. The electron wave packet created by a

femtosecond pulse of extreme ultraviolet radiation (XUV) is

accelerated by the superimposed laser field, and the energy by

which its spectrum shifts up or down indicates the electron

release time tX relative to the temporal profile of the laser field

EL(t). In many cases the low-frequency laser field is strongly

damped by the dielectric response [11], so the photoelectron

needs to travel some distance before it gets exposed to the

streaking field. This is the basis of a number of theories

proposed to describe the electron dynamics in the attosecond

experiment [12–16].

The key questions are how much time does the excited

electron spend in the solid before it escapes into vacuum

and what is its velocity? Here, we discover the crucial role

the exciting light pulse plays in the electron dynamics in a

streaking experiment: the Bloch wave packet excited close

to a gap in the energy spectrum moves faster than with the

group velocity. The reason is that its spectrum keeps evolving

while it moves. The size of the effect depends on inelastic

scattering, so to validate the relevance of our calculations to

the actual photoemission process we numerically establish the

equivalence of the results obtained with an absorbing potential

and with a statistical averaging over random perturbations.

Further, we verify the accuracy of the laser-streaking clock by

comparing it with the exact clock based on solely the spatial

motion of the packet.

Once the wave packet is created, its time of flight to the

surface is determined by its group velocity v. Owing to inelas-

tic scattering, the photoelectron excited at a depth z has the

probability exp(−z/λ) to reach the detector, so the average tra-

versed depth is just the mean-free path (MFP) λ, and the time to

reach the surface is τ = λ/v [8]. Inelastic scattering enters the

Hamiltonian through the imaginary optical potential −iVi. For

nearly free electrons λ is proportional to v, so that τ depends on

energy solely through Vi(E), Supplemental Material A [17]:

τ =
�

2Vi

. (1)

The optical potential changes smoothly with energy and is

similar for different materials, as suggested by experience

with angle-resolved photoemission (ARPES) [18,19,23] and

very low-energy electron diffraction (VLEED) [20,21,24],

Fig. 1(c). Thus, τ is expected to change slowly with energy,

irrespective of MFP, which may rapidly vary following

the group velocity, Fig. 1(b) [25]. Microscopically, the

optical potential is associated with the imaginary part of the

self-energy [23]. Figure 1(c) includes corresponding ab initio

results for a high-lying free-electron-like conduction band of

W along ŴN obtained within the GW approximation [26].

The good agreement of the calculated Vi(E) with the empirical

results supports our understanding of the electron absorption as

coming predominantly from the electron-electron interaction

and confirms the empirical estimate of its growth with energy.

Thus, the higher the electron energy the earlier it should

escape, see Fig. 1(d). The measurements on W(110) [22] of

the time delay between 5d valence band (VB) and semicore

4f states qualitatively follow this trend [Fig. 1(d)], but

experimental values are about three times larger. On the

contrary, the value of 5 ± 20 asec for the delay of core

Mg 2p electrons relative to VB measured on Mg(0001) at

�ω = 118 eV is much smaller than follows from Eq. (1).

Below, we present a mechanism that may be responsible for
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FIG. 1. (a) Real band structure of Mg(0001) (thin lines) and dispersion E(k) of conducting Bloch waves (see also Supplemental Material

B [17]): line thickness indicates the current carried by the wave as a constituent of the outgoing beam. Only the fragments related to real k

are shown. (b) Velocity of conducting waves (including complex band structure). Arrows show the final states for emission from Mg 2p and

from VB. (c) Vi(E) empirically derived from ARPES of TiTe2 [18] and Al(100) [19] (small full circles) and from VLEED of TiTe2 [20] and

Ru(0001) [21] (open circles). Large circles are the ab initio GW calculation for W(110) for the band highlighted in the inset. (d) Arrival delay

as a function of the final-state energy according to Eq. (1). Top (blue) curve is for the emission from Mg(0001): Mg 2p band relative to VB

(EVB − E2p = 50 eV), and bottom (red) curve is for W(110): W 4f band relative to VB (EVB − E4f = 28 eV). For W(110), the function Vi(E)

is the analytical fit to GW values [graph (c)], and for Mg(0001) we used a fit to the Al(100) data. The red square and open red circles are

experimental results for W(110) of Ref. [8] and of Ref. [22], respectively. Full blue circle is the measurement of Ref. [9] for Mg.

such drastic disagreement and point to the cases in which

Eq. (1) does not hold.

For the proof-of-concept calculation we employ a numeri-

cally exact particle-in-the-box model that makes no assump-

tions about the electron dynamics in a periodic potential

and does not separate excitation from transport. The box

comprises a thick one-dimensional (1D) crystal slab on a

structureless substrate [potential V (z) in Fig. 2(a)] and the

vacuum half space, see Supplemental Material C [17] and

Ref. [27].

We perform a series of numerical experiments, in which

electrons are excited by an XUV pulse of duration DX = 1

fs and are simultaneously acted upon by the laser pulse

EL(t) of duration 5 fs, photon energy 1.65 eV and amplitude

EM
L

= 2 × 107 V/cm, see Fig. 2(b) and Supplemental Material

D [17]. The laser field is screened by multiplying by a smooth

step function θ (z). The time-dependent Schrödinger equation

is solved in matrix form in terms of exact eigenfunctions of

the unperturbed Hamiltonian Ĥ = p̂2/2m + V , so the crystal

potential is fully taken into account for both initial and final

states [27,28]. Apart from Ĥ and the two external fields the

Hamiltonian includes inelastic scattering in two alternative

ways: it is either a static absorbing potential −iVi[1 − θ (z)]

or a real stochastic potential σn(t,z)[1 − θ (z)] followed by

averaging over random configurations σn, Supplemental

Material E [17].

The displacement �E of the spectrum from its laser-free

position [Fig. 2(e)] as a function of the time shift �t = tL − tX

between the XUV and the laser pulse provides the temporal

information: by fitting the measured �E(�t) points with

the momentum transfer function p(τ ) = e
∫ ∞

τ
dt EL(t − tX), we

infer the time τ at which the electron appears in vacuum, see

the shift of the curves in Figs. 2(c) and 2(d).

First, we consider a setup where the photoelectron initial

position is known: we introduce a small defect at one of

the layers [Fig. 2(a)] and photoexcite the localized state at

the defect. Figures 2(c) and 2(d) show streaking curves for

the initial state at the third layer for XUV photon energies

�ω = 78 and 90 eV. Counterintuitively, the electron at the

higher energy arrives 40 asec later than at the lower energy:

τ = 150 asec at 90 eV and τ = 111 asec at 78 eV. Note

that phenomenological absorbing potential and microscopic

random collisions agree both in the temporal shift of the

streaking curves, Figs. 2(c) and 2(d), and in the energy shift

of the individual spectra, Fig. 2(e). Figure 2(g) shows the

escape time of the electron initially at the second, third, and

fourth layer for �ω = 65 to 159 eV (initial state energy is

Eini = −41.2 eV). The most striking are the two minima at

E = �ω + Eini = 39 and at 102 eV [A and C in Fig. 2(g)], at

which τ even shows negative values [29].

The minima B and C are located at the lower edges of

the band gaps, and minimum A is due to the vanishing

ionization cross section (Cooper minimum), see Fig. 2(f).

There τ (E) strongly deviates from the function d/v(E) with

v(E) = dE/d�k [dashed curve in Fig. 2(g)]. To prove that the

discrepancy does not arise from the rather indirect streaking

method to measure τ , we use an alternative clock: we switch

off the laser and measure the wave packet’s equation of motion

in vacuum z0 + ṽt [inset of Fig. 2(i)] to obtain the time point

t0 at which it has crossed the surface. The curves t0(E) and

τ (E) agree well, Fig. 2(h) and 2(i), so the laser-streaking clock

is reliable.

The fast delivery of the photoelectron to the surface is

due to the pump excitation: Fig. 3 shows the time evolution

of the spectrum at the τ (E) minimum, �ω = 80 eV, and at

�ω = 100 eV, where τ (E) well agrees with the instantaneous
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FIG. 2. Escape time from the streaking clock for a localized state. (a) Crystal potential V (z) with a defect at the third layer. (b) Superposition

of the XUV and laser pulses. (c) Streaking curves for �ω = 78 and 90 eV with random collisions; (d) the same with absorbing potential. (e)

Streaked spectra for �ω = 78 eV with absorption (lower curves) and with random collisions (top curves) for tL − tX = 1600 asec (solid lines)

and 200 asec (dashed lines). (f) Band structure with the periodic potential V (z) and energy dependence of the emission intensity from a localized

state at a defect. (g)–(i) Escape time as function of the final energy E = �ω − 41.2 eV. Solid lines connecting small circles in (g) and dashed

lines in (h) and (i) are streaking results with absorption. Large circles in (g) and (i) are streaking with random collisions. In (g), initial state

is at the second (black), third (red), and fourth (blue) layer; dashed curve is the depth divided by the group velocity. In (h) and (i), solid lines

are from the equation of motion z(t) in vacuum for initial state in the second (h) and in the first (i) layer, for Vi = 0, 0.07, 0.41, and 1.65 eV.

Inset shows z(t) for initial state in the first (black) and second (red) layer. The relevant final energy is indicated by the red dashed vertical bar

in (i).

approximation d/v(E). The two spectra evolve qualitatively

differently: while at 100 eV the intensity rapidly concentrates

around E = �ω + Eini, at 80 eV the evolution is much slower:

at t = 200 asec the spectrum is still spread over a range of

40 eV. Clearly, while the XUV pulse is on and the spectral

coefficients ψ(E,t) of the packet
∫
dE ψ(E,t)| E 〉 keep

changing, the centroid velocity generally deviates from the

FIG. 3. Temporal evolution of the photoelectron spectrum from

a localized state. XUV pulse duration is DX = 1000 asec. (a) XUV

photon energy �ω = 80 eV. (b) �ω = 100 eV. The black bars at 46

and 50 eV indicate a spectral gap, and the red bar at 39 eV indicates

the Cooper minimum, see Fig. 2(f). For the sake of better clarity, the

maps are presented for Vi = 0.

weighted group velocity of the states | E 〉. Such unusual

behavior happens every time when the central energy of

the wave packet approaches an intensity minimum, be it a

vanishing matrix element or a spectral gap. Note that for the

emission from the first layer there is a retardation by about

200 asec, which is apparently caused by the asymmetry of the

excitation cross section at the surface.

The comparison in Fig. 2(h) of the t0(E) curves for different

Vi shows that in the nearly free electron region the motion

in a nonabsorbing medium is slower than with Vi �= 0, the

speed gain being 20% at Vi = 1.65 eV. An obvious reason is

that the slower components of the wave packet are stronger

damped. In the gap vicinity, however, the advancement is

much larger and the dependence on Vi is much stronger.

Here we must recall that inelastic scattering is accompanied

by the dephasing of the wave packet, which is neglected in

the optical potential approach. Thus, we need to establish

that the artificial coherence does not alter the result. The

escape time τ (E) obtained with a real potential σn(t,z) (a

random function of both time and coordinate) are presented in

Fig. 2(g) for emission from the second and fourth layer and

in Fig. 2(i) for the first layer (large circles). The stochastic

perturbation was chosen such as to give the same MFP as

Vi = 1.7 eV, Supplemental Material E [17]. The dephasing

broadens the τ (E) features, but otherwise the incoherent

ensemble behaves the same as the coherent packet in the
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valence band emission. Streaking clock results (circles) are compared

with τ̃ obtained from Eq. (2) (thick curves) with s = 1.75 a.u. and

w = 97.25 a.u. Three values of the optical potential are considered:

Vi = 0.8, 1.7, and 2.5 eV. Thin dashed lines are the guide for the

eye. Letters A, B, and C indicate the intensity minima as shown in

Fig. 2(f).

absorbing medium. For the localized states considered above

the electron initial position was known. On the contrary, a

Bloch state is coherently excited over a depth much larger

than MFP, so the initial position depends on MFP. Let us

return to the original question of whether Eq. (1) holds in

photoemission. We consider the valence band of the crystal

of Fig. 2(a) given by a set of discrete states, each extending

over the slab of thickness 96 a.u. (MFP is 10–20 a.u.). Escape

time τ is obtained from the streaking curves [as in Figs. 2(c)

and 2(d)] for the energy centroid of the sum of the spectra from

all the initial states. Figure 4 shows the results for �ω = 65

to 160 eV (VB is centered at −37.3 eV, see Supplemental

Material C [17]).

Even far from the spectral gaps τ (E) is not constant but

slowly decreases with energy. This, however, does not disprove

the idea behind Eq. (1) since this happens because the initial

states density edge does not coincide with the onset of the

streaking field, see inset of Fig. 4. The generalization of

Eq. (1) to the case of a finite distance s between the two

planes and a finite slab thickness w reads, see Supplemental

Material A [17]:

τ̃ (v) = τ +
s

v
+

w/v

1 − exp(w/vτ )
. (2)

Between E = 50 and 90 eV the curves for three values of Vi

are well fitted by Eq. (2) with s = 1.75 a.u., which agrees with

the nominal distance of 2.75 a.u. between the crystal edge and

the laser field drop off. These calculations support the initial

idea that Bloch electrons can be thought of as starting at the

MFP depth λ and moving with the group velocity. However, at

the energies where the group velocity drops due to the Bragg

scattering the escape time becomes shorter and, moreover, the

wave packet leaves the crystal earlier than it would have if it

moved in a constant (inner) potential.

This result is quite relevant to Mg(0001), as illustrated in

Figs. 1(a) and 1(b): In the experiment of Ref. [9] the emission

from the VB overlaps with a continuous fragment of the

conducting spectrum, whereas the Mg 2p electrons are excited

to a narrow band between two gaps, so the photoelectron

undergoes strong lattice scattering, Fig. 1(b). This is just the

case when the escape time does not obey Eq. (2), and one may

even expect the Mg 2p to arrive earlier than the VB electron.

This phenomenon should be distinguished from the well-

known Hartman effect, where the tunneling time through a

thick barrier turns out to be shorter than the time required

by a free particle to travel the same distance [30,31]. In the

streaking experiment, owing to the broad spectrum of the pump

pulse, the packet consists mainly of propagating waves, and

generally the tunneling is negligible, see Fig. 3(a). Still, a

behavior similar to the Hartman effect is observed in the broad

gap at E = 105 eV as a minimum of the t0(E) curve for Vi = 0,

see Fig. 2(h): the transport by evanescent waves in the middle

of the gap is faster than by the propagating waves at the edges

of the gap.

It is often asked, where is the spatial starting point of the

outgoing photoelectron packet [8,9,12–16,32,33]? A meaning

to the notion “starting point” can be ascribed by the streaking

experiment or by measuring the motion at later time. If the

location of the initial state is taken for the starting point

then at certain energies we observe a curious behavior: the

electron starting from the outermost layer is overtaken by

the one coming from a deeper layer [Figs. 2(h) and 2(i)].

The discovered influence of the exciting light pulse on the

wave packet dynamics offers a way to manipulate the electron

transport at the nanoscale by tuning the temporal structure

of the pulse. Here two aspects are equally important: by

changing the frequency ω one selects the final state range

and by changing the pulse duration one further controls its

speed.
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[5] J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F.

Krausz, and P. B. Corkum, Phys. Rev. Lett. 88, 173903

(2002).

[6] M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C.

Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, Science

291, 1923 (2001).

[7] R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska,

V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesloh,

195434-4



RAPID PROPAGATION OF A BLOCH WAVE PACKET . . . PHYSICAL REVIEW B 94, 195434 (2016)

U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz,

Nature (London) 427, 817 (2004).

[8] A. L. Cavalieri, N. Muller, T. Uphues, V. S. Yakovlev, A.

Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth,

S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R.

Kienberger, F. Krausz, and U. Heinzmann, Nature (London)

449, 1029 (2007).

[9] S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D.

Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner,

Phys. Rev. Lett. 109, 087401 (2012).

[10] S. Neppl, R. Ernstorfer, A. L. Cavalieri, C. Lemell, G. Wachter,

E. Magerl, E. M. Bothschafter, M. Jobst, M. Hofstetter, U.

Kleineberg, J. V. Barth, D. Menzel, J. Burgdorfer, P. Feulner, F.

Krausz, and R. Kienberger, Nature (London) 517, 342 (2015).

[11] E. E. Krasovskii, V. M. Silkin, V. U. Nazarov, P. M. Echenique,

and E. V. Chulkov, Phys. Rev. B 82, 125102 (2010).

[12] J. C. Baggesen and L. B. Madsen, Phys. Rev. A 78, 032903

(2008).
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[26] C. Friedrich, S. Blügel, and A. Schindlmayr, Phys. Rev. B 81,

125102 (2010).

[27] E. E. Krasovskii, Phys. Rev. B 84, 195106 (2011).

[28] E. E. Krasovskii and M. Bonitz, Phys. Rev. Lett. 99, 247601

(2007)

[29] The negative values of τ do not violate causality because t = 0

is the center of the XUV pulse, and emission begins at t =

−500 asec, see also Supplemental Material F [17].

[30] T. E. Hartman, J. Appl. Phys. 33, 3427 (1962).

[31] H. G. Winful, Phys. Rep. 436, 1 (2006).

[32] C.-H. Zhang and U. Thumm, Phys. Rev. Lett. 102, 123601

(2009).

[33] Q. Liao and U. Thumm, Phys. Rev. A 92, 031401

(2015).

195434-5


