000825052 001__ 825052
000825052 005__ 20210129225208.0
000825052 0247_ $$2doi$$a10.1103/PhysRevX.6.041023
000825052 0247_ $$2Handle$$a2128/13209
000825052 0247_ $$2WOS$$aWOS:000390222300001
000825052 0247_ $$2altmetric$$aaltmetric:13109833
000825052 037__ $$aFZJ-2016-07532
000825052 082__ $$a530
000825052 1001_ $$0P:(DE-HGF)0$$aAldam, Michael$$b0
000825052 245__ $$aFrictional Sliding without Geometrical Reflection Symmetry
000825052 260__ $$aCollege Park, Md.$$bAPS$$c2016
000825052 3367_ $$2DRIVER$$aarticle
000825052 3367_ $$2DataCite$$aOutput Types/Journal article
000825052 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481721366_12862
000825052 3367_ $$2BibTeX$$aARTICLE
000825052 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825052 3367_ $$00$$2EndNote$$aJournal Article
000825052 520__ $$aThe dynamics of frictional interfaces plays an important role in many physical systems spanning a broad range of scales. It is well known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism, and rupture directionality. In contrast, it is traditionally assumed that interfaces separating identical materials do not feature such a coupling because of symmetry considerations. We show, combining theory and experiments, that interfaces that separate bodies made of macroscopically identical materials but lack geometrical reflection symmetry generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can destabilize frictional sliding, which is otherwise stable. The emerging framework is expected to find applications in a broad range of systems.
000825052 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000825052 588__ $$aDataset connected to CrossRef
000825052 7001_ $$0P:(DE-HGF)0$$aBar-Sinai, Yohai$$b1
000825052 7001_ $$0P:(DE-HGF)0$$aSvetlizky, Ilya$$b2
000825052 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b3$$ufzj
000825052 7001_ $$0P:(DE-HGF)0$$aFineberg, Jay$$b4
000825052 7001_ $$0P:(DE-HGF)0$$aBouchbinder, Eran$$b5$$eCorresponding author
000825052 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.6.041023$$gVol. 6, no. 4, p. 041023$$n4$$p041023$$tPhysical review / X$$v6$$x2160-3308$$y2016
000825052 8564_ $$uhttps://juser.fz-juelich.de/record/825052/files/PhysRevX.6.041023.pdf$$yOpenAccess
000825052 8564_ $$uhttps://juser.fz-juelich.de/record/825052/files/PhysRevX.6.041023.gif?subformat=icon$$xicon$$yOpenAccess
000825052 8564_ $$uhttps://juser.fz-juelich.de/record/825052/files/PhysRevX.6.041023.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825052 8564_ $$uhttps://juser.fz-juelich.de/record/825052/files/PhysRevX.6.041023.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825052 8564_ $$uhttps://juser.fz-juelich.de/record/825052/files/PhysRevX.6.041023.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825052 8564_ $$uhttps://juser.fz-juelich.de/record/825052/files/PhysRevX.6.041023.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825052 909CO $$ooai:juser.fz-juelich.de:825052$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825052 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b3$$kFZJ
000825052 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000825052 9141_ $$y2016
000825052 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000825052 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825052 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2015
000825052 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV X : 2015
000825052 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825052 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825052 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825052 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825052 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825052 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825052 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825052 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825052 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825052 920__ $$lyes
000825052 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000825052 980__ $$ajournal
000825052 980__ $$aVDB
000825052 980__ $$aUNRESTRICTED
000825052 980__ $$aI:(DE-Juel1)PGI-2-20110106
000825052 9801_ $$aFullTexts