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The dynamics of frictional interfaces plays an important role in many physical systems spanning a broad
range of scales. It is well known that frictional interfaces separating two dissimilar materials couple
interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure
mechanism, and rupture directionality. In contrast, it is traditionally assumed that interfaces separating
identical materials do not feature such a coupling because of symmetry considerations. We show,
combining theory and experiments, that interfaces that separate bodies made of macroscopically identical
materials but lack geometrical reflection symmetry generically feature such a coupling. We discuss two
applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained,
experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can
destabilize frictional sliding, which is otherwise stable. The emerging framework is expected to find
applications in a broad range of systems.
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I. INTRODUCTION

Understanding frictional sliding is a long-standing chal-
lenge with important practical and theoretical implications.
It is relevant in diverse physical systems spanning a broad
range of scales, from the nanoscale to the planetary scale. A
complete analytic treatment of sliding frictional interfaces
is generally a formidable task. Two major factors are
responsible for the complexity of the problem. First, the
friction law, i.e., the constitutive relation that describes the
shear traction at the frictional interface, poses experimental
challenges and depends on the slip rate and slip history
in a highly nonlinear fashion [1–10]. The second factor
is the elastodynamics of the sliding bodies, i.e., the time-
dependent long-range stress transfer mechanisms between
different points along the interface. It is particularly
challenging when the two bodies are made of different
materials and in the generic case in which spontaneously
generated interfacial rupture fronts dynamically propagate
along the interface [11–23].
A significant simplification in relation to the second

factor is obtained when the system possesses reflection
symmetry across the interface, i.e., when the two materials
are identical, the geometry is symmetric, and the loading
configuration is antisymmetric. (Here and elsewhere, we
consider macroscopic geometry. Differences in small-scale
roughness typically exist and are effectively incorporated

into the interfacial constitutive relation.) A prototypical
example of such a situation is that of two semi-infinite half-
spaces made of identical elastic materials, a situation that
was extensively studied in the literature (see, for example,
Refs. [24–36]). The main simplification comes from the
fact that such a symmetry precludes a coupling between
tangential slip and variations in the normal stress. The lack
of such symmetry has important implications on the
stability of sliding [11,15,16,20,21,23,37,38], the failure
mechanism and rupture directionality [17,21,23,37–45].
Physically, this happens because sliding can enhance
(reduce) the normal stress, which in turn can inhibit
(facilitate) frictional sliding.
The origin of the absence of reflection symmetry is

traditionally assumed to be constitutive in nature; i.e.,
sliding of dissimilar materials is usually considered. This
is known as the bimaterial effect. Sliding along such
bimaterial interfaces has been quite extensively studied
in the literature, and this material contrast is thought to have
important implications for frictional dynamics [11,15–
17,20–23,37–45]. The purpose of this paper is to explore
the possibility of asymmetry of a geometric origin, i.e.,
sliding of two bodies made of the same material without
geometrical reflection symmetry. Examples of such geom-
etries are depicted in Fig. 1: sliding of two blocks with
different thickness in the direction orthogonal to sliding, an
experimental setup that was used in various recent works
[46–50] and will be theoretically addressed below [panel
(a)]; sliding of a block of finite height H over a semi-
infinite bulk, a simple example to be analyzed in depth in
this work [panel (b)]; finally, an idealized sketch of tectonic
subduction motion [panel (c)], a situation in which one

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 6, 041023 (2016)

2160-3308=16=6(4)=041023(14) 041023-1 Published by the American Physical Society



lithospheric plate is subducted beneath another one and
is responsible for most of the large magnitude earth-
quakes (“megathrust”) occurring on the Earth’s crust
(see Refs. [51–56], for example). Obviously, many other
sliding geometries that lack reflection symmetry can be
conceived. Generally speaking, this situation is expected to
be the rule rather than the exception since no physical
system features perfect reflection symmetry.
In this paper, we lay out a rather general theoretical

framework to address frictional sliding in the absence of
geometrical reflection symmetry and support it by exten-
sive experiments. A major outcome is that the effect of
geometric asymmetry resembles, sometimes qualitatively
and sometimes semiquantitatively, that of material asym-
metry. Consequently, many results obtained for bimaterial
interfaces are also relevant to interfaces separating bodies
made of identical materials with different geometries. As
first applications, two main results are obtained within the
newly developed framework:

(i) A novel explanation of a sizable weakening effect
observed in recent experiments on rupture-fronts
propagation along frictional interfaces [49]. The
weakening effect is directly linked to geometric
asymmetry and is shown experimentally to disap-
pear in its absence. This result has important
implications for the failure dynamics of frictional
interfaces.

(ii) We demonstrate that geometric asymmetry can
destabilize frictional sliding that is otherwise stable.
We consequently expect geometric asymmetry to
play an important role in frictional instabilities.

The emerging framework should find additional applica-
tions in a broad range of frictional systems.

II. GENERAL FRAMEWORK

Consider two blocks in frictional contact. At this stage,
the discussion remains completely general, allowing the
two blocks to be made of different materials, to feature
different geometries, and to experience general external
loadings. We denote the displacement vector fields in the
two blocks as u

ð1Þðx; tÞ and u
ð2Þðx; tÞ, where the super-

scripts correspond to the upper and lower blocks, respec-
tively. Each of these satisfies the momentum balance
equation ∇ · σ ¼ ρü, where ρ is the mass density of each
block. Cauchy’s stress tensor σ is related to the displace-
ment gradient tensor∇u according to the isotropic Hooke’s
law ð1þ νÞμ½∇uþ ð∇uÞT� ¼ σ − νðItrσ − σÞ. Here, I is
the identity tensor, ν is Poisson’s ratio, and μ is the shear
modulus of each block. The coordinates are chosen such
that the interface lies along the x axis, which is also the
direction of sliding (see Fig. 1). The direction normal to the
interface is the y axis, and the interface is the surface y ¼ 0.
The z axis is in the thickness direction, where z ¼ 0 is the
center line. While the formulation below and the analysis in
Sec. IV are two dimensional (2D), in Sec. III we see that
three-dimensional (3D) effects involving the z coordinate
play an important role.
Since the bulk equations are linear, one can separately

analyze each interfacial Fourier mode, i.e., write
u
ðnÞðx; y ¼ 0; tÞ ¼ u

ðnÞeikðx−ctÞ, where k > 0, c is the com-
plex propagation (phase) velocity and n ¼ 1, 2. The
relation between the interfacial displacements and stresses

is also linear and can be written as uðnÞi ¼ M
ðnÞ
ij ðc; kÞσ

ðnÞ
yj ,

where the matrix M
ðnÞ can be obtained from the Green’s

function of the corresponding medium and σ
ðnÞ
yi are the

interfacial stresses, i.e., at y ¼ 0. For example, under
quasistatic conditions for semi-infinite blocks in 2D, this
relation for the lower block (i.e., the block at y < 0) takes
the form [57]

�

ux

uy

�

¼
1

μk

�

1 − ν − i
2
ð1 − 2νÞ

i
2
ð1 − 2νÞ 1 − ν

��

σxy

σyy

�

: ð1Þ

The essence of frictional motion is that the displacement
field is discontinuous across the interface. We denote the
slip discontinuity at the frictional interface by

ϵiðxÞ≡ u
ð1Þ
i ðx; y ¼ 0þÞ − u

ð2Þ
i ðx; y ¼ 0−Þ: ð2Þ

On the interface, y ¼ 0, no separation or interpenetration
between the bulks implies ϵy ¼ 0 and continuity of σyi.
Together with the known dynamic response matrices MðnÞ,
these requirements can be used to calculate the relation
between the slip discontinuity and the interfacial stresses of
the composite system that consists of both bulks. Following
Ref. [58], this calculation is done by noting that for y ¼ 0,

(a) (b)

(c)

FIG. 1. Examples of physical systems featuring frictional
interfaces separating bodies made of identical materials without
geometrical reflection symmetry. (a) A thin block sliding over a
thicker block. (b) A block of finite height H sliding atop a semi-
infinite bulk. Sliding occurs in the x direction. (c) An idealized
schematic geometry of tectonic subduction motion.
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we have σyi ¼ ðMð1Þ −M
ð2ÞÞ−1ij ϵj. Thus, the response of the

composite system in 2D reads (in Fourier space)

σxy ¼ μð1ÞkGxðc; kÞϵxðkÞ;

σyy ¼ iμð1ÞkGyðc; kÞϵxðkÞ; ð3Þ

where we defined the elastic response functions
Gxðc; kÞ ≡ ðμð1ÞkÞ−1ðMð1Þ − M

ð2ÞÞ−1xx and Gyðc;kÞ≡

−iðμð1ÞkÞ−1ðMð1Þ−Mð2ÞÞ−1yx . In other words, the Gi’s can
be expressed as functions of the response coefficients of
both bulks. Note that the imaginary unit i is included in
Eq. (3) for convenience. Note also that we use the same
notation for a function and its Fourier transform, as they are
easily distinguishable by the context or the stated argu-
ments (e.g., k or x).
The central player in the analysis to follow is Gy, which

represents the elastodynamic coupling between tangential
slip and normal traction along the interface. In systems with
complete reflection symmetry along y ¼ 0, this coupling is
precluded by symmetry. To see this, note that, in this case,
the off-diagonal elements of Mð1Þ and M

ð2Þ are identical
[57], and thus M

ð1Þ −M
ð2Þ, as well as its inverse, is

diagonal. This result immediately implies Gy ¼ 0. In what
follows, we study two important frictional problems in
which the sliding bodies are made of identical materials,
i.e., ρð1Þ ¼ ρð2Þ ≡ ρ, μð1Þ ¼ μð2Þ ≡ μ, and νð1Þ ¼ νð2Þ ≡ ν,
yet reflection symmetry relative to the interface is absent
because of asymmetry in the geometry of the bodies,
leading to Gy ≠ 0. These problems highlight the impor-
tance of geometrical asymmetry to frictional sliding and its
relation to the conventional bimaterial effect.

III. THIN-ON-THICK SYSTEMS AND THE

PROPAGATION OF FRICTIONAL CRACKS

The first problem that we examine, which is directly
motivated by recent experimental observations [44,49], is
depicted in Fig. 1(a). In this system, a thin block of width
W ¼ 5.5 mm is pushed along its length (the x axis) on top
of a significantly thicker block (here, 30 mm). This thin-
on-thick experimental setup was used in various studies
[46–50], where a transparent glassy polymer [poly(methyl-
methacrylate), PMMA] was used. The transparent material
allows a direct real-time visualization and quantification of
a fundamental interfacial quantity: the real contact area Ar.
The latter is the sum over isolated microcontacts formed
because of the small-scale roughness of macroscopic
surfaces.
Ar is typically orders of magnitude smaller than the

nominal contact area An. The ratio A≡ Ar=An ≪ 1 plays a
critical role in interfacial dynamics [2,3,46–49,59–62]
because the frictional stress is proportional to A,
σxy ∝ A; i.e., the larger the real contact area the
larger the frictional resistance. A itself depends on the

normal stress and also on the slip history of the interface
according to

σxy ∝ A ∝ σyyð1þ ψÞ; ð4Þ

where ψ is an internal variable characterizing the state of
the interface. Frictional sliding leads to reduction of ψ , i.e.,
to a reduction of the contact area [1–3,6,61,63]. In the
absence of sliding, ψ (and hence A) grows logarithmically
with time, a process known as frictional aging
[1,3,48,64,65].
In Ref. [49], it was found that sliding is mediated by a

succession of cracklike rupture fronts propagating along
the frictional interface and that these fronts are surprisingly
well described by the classical theory of shear cracks
propagating along an interface separating identical materi-
als, linear elastic fracture mechanics (LEFM). The variation
of A along a few of these fronts is shown here in Fig. 2(a). It
is seen that the rupture fronts involve a significant overall
reduction of the contact area, which weakens the interface
(i.e., reduces ψ) and facilitates sliding. We focus our
attention on a distinct feature of these curves: As observed
in Fig. 2(a), fronts that travel at 90% of the Rayleigh wave-
speed cR, here cR ≃ 1237 m=s (for plane-stress conditions,
see Ref. [57]), or slower (not shown), feature a monotonic
decrease of A. However, in fronts propagating even closer
to cR, A features a nonmonotonic behavior; i.e., A under-
shoots the asymptotic value A∞ (i.e., A as x → −∞) and
then rapidly increases, at a rate way too high to be
explained by slow frictional aging. This nonmonotonic
behavior remained unexplained in Ref. [49], where it was
stated that “the nonmonotonic behavior of A … suggests
interesting dynamics as c → cR….”
In Fig. 2(b), we show the spatial profiles of the slip

velocity v, corresponding to the contact area profiles shown
in Fig. 2(a). These profiles were calculated from the
experimental data using the simplest cohesive zone model
[66–68], which is consistent with the measurements of the
fracture energy and cohesive zone size (see Ref. [57] for
more details). This model, while generally used to describe
identical materials, is motivated by the empirical observa-
tion [57] that the strain fields are, to first order, quite similar
in the thin-on-thin and thin-on-thick setups. This approxi-
mation would, of course, have to be modified in cases of
strong material contrast, where the fields on both sides of
the interface differ strongly [44].
We denote the maximum slip velocity in these profiles

by vm. Next, in order to quantify the nonmonotonic effect,
we define the magnitude of the undershoot ΔA as the
difference between the asymptotic value A∞ and the
minimum of the profile over the range −5 mm < x < 0,
which is the typical spatial range for which ΔA > 0 is
observed in the thin-on-thick setup [see Fig. 2(a)]. In
Fig. 2(c), ΔA=A∞ is plotted vs vm (red symbols), demon-
strating that the former is quasilinear (i.e., predominantly
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linear) in the latter. Note that the spread in the data does not
allow us to identify any systematic deviations from linear-
ity. We stress that the effect is not only qualitatively novel,
i.e., the existence of a nonmonotonic contact area behavior
ΔA=A∞ > 0, but it is also quantitatively important. As
Fig. 2(c) shows, the local reduction in the real contact area
ΔA=A∞ can reach nearly 25%. This is a large quantita-
tive effect, compared to other documented frictional
effects, implying the existence of significant local frictional
weakening, which can significantly influence interfacial
dynamics.
What is the source of this nonmonotonicity, why does it

scale quasilinearly with the slip velocity, and why does it
appear only at sonic propagation velocities? Such behavior
has recently been observed in Ref. [44] when investigating
the frictional motion of bimaterial interfaces in a geomet-
rically symmetric system. There, a very large local reduc-
tion of A was observed at sonic propagation velocities, but
it entirely disappeared when the upper and lower blocks
were made of the same material. We propose that the same
thing happens in our case, only here it is due to geometric
asymmetry. In other words, we suggest that the non-
monotonicity of A stems from the absence of geometrical
reflection symmetry of the two blocks, i.e., from the
difference in their thickness. If this is true, then the fast

nonmonotonic variation of A is not an intrinsically fric-
tional phenomenon, i.e., a result of the dynamics of the
state of the interface ψ , but rather an elastodynamic effect
emerging from the coupling between slip and normal stress
variations, solely induced by geometrical effects. In terms
of Eq. (4), we propose that ψ is monotonic and that
the nonmonotonicity of A results from a nonmonotonic
behavior of σyy.
Our strategy in testing and exploring this idea is twofold.

First, our idea can be directly tested by a definitive
experiment. In other words, we expect that when the width
of the lower block equals that of the upper one, i.e., in a
thin-on-thin setup, the nonmonotonicity in A disappears
altogether even in the limit c→ cR. We performed this
experiment, as in Ref. [44], and we present a representative
example (for c ¼ 0.993cR) in the inset of Fig. 2(c) (blue
line). The curve is indeed monotonic. Moreover, note that
the asymptotic value A∞ is the same as that in the thin-on-
thick setup [cf. Fig. 1(a), for the same propagation
velocity], even though the latter exhibits a large undershoot.
In Fig. 2(c) (main panel), we added ΔA=A∞ of many
rupture fronts in the thin-on-thin setup (blue symbols).
Note that ΔA=A∞ is indeed very close to zero (small
negative values simply correspond to monotonic behavior);
i.e., all of the A profiles in the thin-on-thin setup are

FIG. 2. Experimental results. (a) Snapshots of the spatial profile of the contact area A of rupture fronts in the “thin-on-thick” setup [see
Fig. 1(a) and Ref. [49] for additional details]. These fronts propagate to the right at velocities c indicated in the legend of panel
(b) (0.900cR < c < 0.993cR, see Ref. [57]), where x ¼ 0 corresponds to the tip of each rupture front. The contact area is normalized by
its value A0 before the passage of the front. (b) The slip-velocity profiles corresponding to the snapshots in panel (a) (see Ref. [57] for
details). (c) ΔA=A∞, where ΔA is the magnitude of the real contact area undershoot and A∞ is the asymptotic value (see inset) vs the
maximal slip velocity vm [see panel (b)] for both the thin-on-thick setup (red symbols) and the geometrically symmetric “thin-on-thin”
setup (blue symbols). Different symbols correspond to different experiments, and their size roughly corresponds to the measurement
error. The red line is the best linear fit for the red symbols. (Inset) The contact area profile for c ¼ 0.993cR in the thin-on-thick setup [red
line, already appearing in panel (a)] and in the geometrically symmetric thin-on-thin setup (blue line).
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monotonic. This direct experimental evidence provides
unquestionable support of our basic idea that the non-
monotonic behavior corresponding to the thin-on-thick
setup data in Fig. 2(a) emerges from the absence of
geometrical reflection symmetry.
Next, our aim is to develop a theoretical understanding

of the origin of nonmonotonicity. The challenge is to
explain both the fact that it emerges at asymptotic
propagation velocities (c → cR) and the quasilinear rela-
tion between ΔA=A∞ and vm. The complete problem,
involving a thin block sliding atop a thicker one, is a very
complicated 3D elastodynamic problem. We approach the
problem by breaking it into two steps. First, we perform a
simplified analysis, invoking physically motivated
approximations, which allow us to reduce the mathemati-
cal complexity of the problem and gain analytic insight
into it. The major simplification is to consider the
corresponding quasistatic problem instead of the full
elastodynamic one. The physical rationale for this is
clear: The absence of geometrical reflection symmetry
should also manifest its generic implications in the
framework of static elasticity, and hence the simplified
analysis is expected to reveal the origin of the non-
monotonicity of the real contact area. Then, in the second
step, we use the static results in an effective dynamic
calculation, to be explained below.
The main outcome of the first step is that the static 3D

problem can be approximately mapped onto a 2D problem
involving two elastically dissimilar materials. In other
words, we show that the geometric asymmetry can be
approximately mapped onto an effective constitutive asym-
metry, i.e., an effective material contrast. To see how this

emerges, we assume that both blocks are infinite in the y
direction and that the thicker (lower) block is also infinite in
the z direction. In other words, the lower block is replaced
by a semi-infinite 3D half-space, which allows us to use
the well-known interfacial Green’s function [69]. More
specifically, the 3D real-space Green’s function matrix
M̂

3Dðr − r
0Þ [69] allows us to express the interfacial

displacements at a point r ¼ ðx; y ¼ 0; z ¼ 0Þ on the
symmetry line, uðrÞ ¼ ðux; uyÞ, induced by a point force
applied by the upper block at r

0 ¼ ðx0; y ¼ 0; z0Þ,
Fðr0Þ ¼ ðFx; FyÞ. We assume that the latter does not
contain an out-of-plane component, i.e., Fz ¼ 0, which,
in principle, could emerge from frustrated Poisson expan-
sion at the interface. It is reasonable, though, to neglect it to
leading order.
We physically expect shear tractions to be uniform

across the thicknessW; hence, they are taken to be constant
for jzj ≤ ðW=2Þ (and, of course, to vanish for jzj > ðW=2Þ).
Thus, we obtain

�

ux

uy

�

¼ M
effðkÞ

�

σxy

σyy

�

; ð5Þ

where the effective 2D response matrix M
effðkÞ of the

thicker (lower) block is given by the Fourier transform of
M̂

3D over the strip jzj ≤ ðW=2Þ,

M
effðkÞ ¼

Z

∞

−∞

dx0
Z

W
2

−W
2

dz0eikðx−x
0Þ
M̂

3Dðx − x0; z0Þ: ð6Þ

The integration can be carried out, resulting in

M
eff ≃

1

μk

 

ð1 − νÞBðqÞ − i
2
ð1 − 2νÞð1 − e−ðjqj=2ÞÞ

i
2
ð1 − 2νÞð1 − e−ðjqj=2ÞÞ ð1 − νÞBðqÞ

!

;

where q≡ kW and BðqÞ ¼ π−1
R q
0 K0ðq

0=2Þdq0 [K0ðzÞ is
the modified Bessel function of the second kind of order 0].
The outcome of the analysis, which is presented in full
detail in Ref. [57], is that MeffðkÞ appears to identify with
the 2D response matrix of Eq. (1), if one defines the
effective elastic moduli of the lower (thicker) block as

μeffðqÞ≃
μ

2ð1 − νÞBðqÞ − ð1 − 2νÞð1 − e−ðjqj=2ÞÞ
;

νeffðqÞ≃
ð1 − νÞBðqÞ − ð1 − 2νÞð1 − e−ðqj=2ÞÞ

2ð1 − νÞBðqÞ − ð1 − 2νÞð1 − e−ðjqj=2ÞÞ
: ð7Þ

These are plotted in Fig. 3(a).
The mapping of the 3D problem onto an effective 2D

problem is formally valid as long as the interfacial stresses
(and hence displacements) in Eq. (5) are approximately

localized in Fourier k space. Otherwise, Eq. (5) will not
identify with Eq. (1) because of the extra k dependence of
μeffðkWÞ and νeffðkWÞ, which is a result of the 3D nature of
the original problem. We note in passing that in the limit
q ¼ kW ≫ 1, μeff → μ and νeff → ν, which corresponds to
2D plane-strain conditions [71]. This result is expected for
small wavelengths, for which the thinner block also appears
infinitely thick, and hence, it is a consistency check on our
calculation. The important observation, though, as is
clearly seen in Fig. 3(a), is that for the thicker block
μeffðkÞ > μ for all experimentally relevant k’s [72]. This
suggests that the thicker block is effectively stiffer than the
thinner one, as hypothesized in Refs. [73,74], where the
thicker block was assumed to correspond to plane-strain
conditions in numerical simulations. In other words, the
main physical insight gained from the performed analysis is
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that geometric asymmetry gives rise to an effective material
contrast.
With this physical insight in hand, we now aim at

addressing the nonmonotonicity of A discussed in panels
(a) and (c) of Fig. 2. The 3D static analysis presented above
may not yield quantitatively accurate predictions when
strongly elastodynamic 2D interfacial rupture fronts are
considered. Yet, we believe that the insight embodied in the
relations μeffðkÞ > μ and νeffðkÞ > ν is physically robust;
hence, we try to explore their quantitative implications in
relation to the experimental observations in the dynamic
regime.
To accomplish this, we consider the 2D dynamic transfer

function Gyðc; kÞ in Eq. (3) and assume that it approx-
imately describes the experimental system when the effec-
tive moduli μeffðkÞ > μ and νeffðkÞ > ν are used for the
thicker (lower) block and when plane-stress conditions [71]
are assumed for the thinner (upper) block. Note that it is
justified to treat the heights of the two blocks as infinite
since the experimental rupture fronts are so fast that they do
not interact with the upper and lower boundaries before
traversing the whole system. Therefore, Eq. (3) can be
rewritten as

Δσyyðc; k; vÞ ¼ −c−1μGy½c; k; μ
effðkÞ; νeffðkÞ�v; ð8Þ

where we used v ¼ _ϵx ¼ −ickϵx for a constant propagation
velocity c.
The 2D infinite-system dynamic transfer function Gyð·Þ

in Eq. (8) was calculated quite some time ago by Weertman
for the sliding of dissimilar materials [12]. We reiterate that
the basic idea here is to use a known result for dissimilar
materials to represent a system composed of identical

materials with geometric asymmetry, utilizing the effective
moduli derived in Eq. (7), μeffðkÞ > μ and νeffðkÞ > ν. In
the presence of any contrast between the shear moduli of
the materials, GyðcÞ is finite, and it increases significantly
at elastodynamic velocities (in fact, it diverges when c
approaches the shear wave-speed cs of the more compliant
material), as shown in Fig. 3(b). Thus, we expect rupture
fronts that propagate at near-sonic velocities to be accom-
panied by a significant reduction in the local normal stress
as implied by Eq. (8), locally reducing the real contact area.
In turn, this reduces the interfacial strength, which facil-
itates sliding. This result is consistent with the experimental
observations of Fig. 2(a), where the nonmonotonicity of A
becomes substantial at asymptotic propagation velocities
(c → cR). This normal stress reduction is also remarkably
similar to the recent observations of Ref. [44] in bimaterial
systems, a similarity that further strengthens the analogy
between geometric asymmetry and material asymmetry.
The connection between geometric and material asym-

metries is yet further strengthened when the directionality
of rupture is considered. The sub-Rayleigh (c < cR)
rupture fronts, shown in Fig. 2(b), propagate from left to
right, in the direction of sliding of the thinner (upper) block
[see also Fig. 1(a)]. Sub-Rayleigh rupture fronts that are
accompanied by normal stress reduction are known to
propagate in the direction of sliding of the more compliant
material in a bimaterial setup, the so-called “preferred
direction” [12,17,44]. This is fully consistent with our
result that the thinner (upper) block is effectively softer than
the thicker (lower) block (or alternatively, that the thicker
block is effectively stiffer than the thinner one).
The quasilinearity of ΔA with the (maximal) slip

velocity, observed in Fig. 2(c), naturally emerges from

FIG. 3. Analytical results. (a) The effective shear modulus μeff of the thicker block, in units of μ, vs the dimensionless wave number
q ¼ kW, cf. Eq. (7). (Inset) The variation of the effective Poisson’s ratio νeffðqÞ with q ¼ kW. In both the main panel and the inset we
used ν ¼ 0.33, which is relevant for PMMA [49,70]. (b) The response function Gy, quantifying the effective bimaterial contrast
according to μeffðqÞ and νeffðqÞ (for the thicker block; the thinner one is represented by plane-stress conditions), corresponding to
selected values of q ¼ kW. The corresponding values of the elastic moduli μeffðqÞ > μ and νeffðqÞ > ν are marked in panel (a) and its
inset using the same color code. (c) Δσyy given in Eq. (8), normalized by the experimentally applied normal stress σ0 ¼ 4.5 MPa, vs the
slip velocity v, where the propagation velocity was set to c ¼ cR ≃ 1237 m=s. The gray dashed line is the red line in Fig. 2(c).
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Eq. (8). To see this, note that ΔA ∝ Δσyy according to
Eq. (4) (recall that ψ in that equation is expected to be
monotonic) and that c remains close to cR to within a few
percent. In this regime (c≃ cR), Gy does not change
appreciably as a function of c, while the maximal v varies
quite substantially [cf. Fig. 2(a)]. This means that while
c≃ cR is required for the existence of the weakening effect,
its variability is mainly determined by v. Putting this
together, we obtain ΔA ∝ v. To obtain some estimate of
the proportionality factor between ΔA and v along this line
of reasoning, we interpretΔσyy in Eq. (8) to be a function of
v alone, with c ¼ cR and k ∼OðW−1Þ, where μeffðkÞ > μ

[cf. Fig. 3(a)].
The results for ΔσyyðvÞ with kW ¼ 3, 4, 5, normalized

by the experimentally applied normal stress σ0, are shown
in Fig. 3(c). The slope of the kW ¼ 5 line is very close to
the slope of the linear fit in Fig. 2(c), which was added to
Fig. 3(c) for comparison (gray dashed line). Note that the
experimental line features a finite v intercept, which is
absent in the theoretical one. This is expected since the
undershootΔA is generally susceptible to variations of both
σyy and the fracture of contacts [variations of ψ in Eq. (4)].
For low values of v, variations of σyy should be small, and
the spatial profile of A is therefore dominated by variations
of ψ . Therefore, AðxÞ should be monotonic in space, similar
to the spatial profile in the thin-on-thin setup, thus render-
ing any undershoots (i.e., ΔA) unmeasurable.
This quantitative agreement should be taken with some

caution in light of the various approximations invoked
above. Yet, the existence of a characteristic wave number
kW ¼ 5 is not unreasonable, as the typical scale of the
velocity peaks [see Fig. 2(b)], the spatial scale of the
undershoot in the contact area [see Fig. 2(a)], andW are all
in the mm scale. Furthermore, the relative magnitudes of
the slopes in Fig. 3(c) provide a testable prediction for how
the slope decreases with increasing W. This should be
experimentally tested in the future. Finally, as W increases
and approaches the width of the lower block, the non-
monotonicity is predicted to disappear, as demonstrated
experimentally in Fig. 2(c) (blue symbols).
The results presented in this section demonstrate that

global geometric features of the sliding bodies in a fric-
tional problem (here, a difference in their thickness) affect
the frictional resistance to sliding and actually make it
easier for interfacial rupture fronts that mediate sliding to
propagate. In fact, the effect of geometric asymmetry is
maximal at the extreme rupture velocities that are the norm
in frictional sliding. This reduction in frictional dissipation
applies to any engineering or tribological system involving
identical materials and geometric asymmetry. As such, it
implies that the design and friction control of any real-life
tribological application must take into account not only the
interfacial properties but also the relative size of the sliding
bodies. In the next section, we show that the same concept
applies to another class of important sliding friction

problems, where a different form of geometric asymmetry
controls the dynamic response of the system.

IV. STABILITY OF FRICTIONAL SLIDING

We now focus on a different, yet conceptually related,
physical situation in which geometric asymmetry plays a
crucial role as well. While in Sec. III geometric asymmetry
was associated with a difference in the thickness of the
sliding bodies, here its origin is a difference in their height.
Moreover, while in Sec. III we addressed the propagation of
spatially localized interfacial cracks, here the focus is on the
stability of homogeneous sliding. Yet, in both cases, a
geometry-induced coupling between interfacial slip and
normal stress variations, encapsulated in the function Gy in
Eq. (3), is the dominant physical player.
We consider an elastic block of heightHð1Þ sliding atop a

block of height Hð2Þ ¼ ηHð1Þ (with a dimensionless pos-
itive η, 0 < η < ∞), both made of the same material under
plane-strain conditions [71], as depicted in Fig. 1(b). Note
that η ¼ 1 corresponds to a symmetric system. The blocks
initially slide at a fixed velocity, and all of the fields are
assumed to reach a steady state. A homogeneous com-

pressive normal stress σ
ð1Þ
yy ¼ −σ0 is imposed at both

y ¼ Hð1Þ and y ¼ −Hð2Þ. In addition, a constant velocity

_u
ð1Þ
x ¼ v in the positive x direction is imposed at y ¼ Hð1Þ

and _u
ð2Þ
x ¼ 0 at y ¼ −Hð2Þ. In this problem, unlike the

problem considered in Sec. III, the interfacial dynamics are
coupled to the boundaries at y ¼ Hð1Þ, −Hð2Þ; hence, the
heights H1;2 are expected to play a central role here.
To fully define the problem, one needs to specify the

frictional boundary condition at the interface. Friction is
commonly modeled as a linear relation between the
interfacial normal stress and the interfacial shear stress
(frictional stress), i.e.,

σxy ¼ −fð·Þσyy; ð9Þ

where fð·Þ represents the friction law. Our major goal here
is to understand the destabilizing effect associated with
geometric asymmetry, i.e., η ≠ 1, which, to the best of our
knowledge, has not been studied before. Consequently, in
order to isolate the geometric effect, below we focus on
situations in which friction is intrinsically stabilizing such
that any instability, if it exists, is associated with the
absence of geometrical reflection symmetry.
To achieve this, we proceed in two steps. First, in

Sec. IVA, we present a simplified analysis involving a
simple velocity-dependent friction law and strong geomet-
rical asymmetry. This will allow us to gain much insight
into the role of geometric asymmetry in frictional sliding
and to clearly identify the physical origin of instability.
Then, in Sec. IV B, we present a significantly generalized
analysis for a realistic friction law, including an internal
state variable and an interfacial memory length, and for any
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level of geometric asymmetry. The emerging results
strengthen the findings of Sec. IVA and extend them.

A. Simplified analysis: Velocity-dependent friction

and large geometric asymmetry

As a primer, here we use a simple friction law where fð·Þ
in Eq. (9) depends only on the interfacial slip velocity
v≡ _ϵx, i.e., fðvÞ. We focus on velocity-strengthening
interfaces, f0ðvÞ > 0, because in this case sliding is
unconditionally stable for symmetric systems [57,75,76];
thus, the origin of any emerging instability must be
associated with the absence of geometrical reflection
symmetry. Moreover, steady-state velocity-strengthening
friction has recently been shown to be a generic feature of
dry interfaces over some velocity range [6]. Finally, to
simplify the analysis further, we consider the case in which
the lower block is much higher than the upper one, η ≫ 1.
In other words, we take the limit Hð2Þ

→ ∞, such that
Hð1Þ ≡H is the only length scale in the problem.
Under what conditions is homogeneous sliding stable?

This question, which is of fundamental importance in a
broad range of frictional problems (see, for example,
Refs. [3,20,23,63,75,77–84]), is first investigated in the
context of the simplified problem defined above. As the
interface is characterized by velocity-strengthening fric-
tion, f0ðvÞ > 0, friction itself tends to stabilize sliding.
Consequently, the only possible destabilizing piece of
physics is the geometric-asymmetry-induced coupling
between interfacial slip and normal stress variations,
encapsulated in the function Gy [cf. Eq. (3)], which also
played a crucial role in Sec. III. Can geometric asymmetry
destabilize velocity-strengthening frictional interfaces in
much the same way as material asymmetry (the bimaterial
effect) can [23]?
To address the stability question, we perturb Eq. (9) to

linear order, obtaining [57]

μGxðc; kÞ þ iμfGyðc; kÞ þ icσ0δf=δv ¼ 0; ð10Þ

which is an implicit equation defining the linear stability
spectrum cðkÞ. In the simple velocity-dependent friction
case considered here, we have δf=δv ¼ f0ðvÞ (more
general interfacial constitutive laws are considered in
Sec. IV B). Perturbations with Im½c� > 0 are unstable
and will grow exponentially, while perturbations with
Im½c� < 0 are stable (remember that k > 0). An explicit
calculation shows that Gy reads [57]

Gy ¼
c2s

c2

�

2ðα2s þ 1Þ

1þ tanhðkHαdÞ
−

2ðα2s þ 1Þ

1þ tanhðkHαsÞ

�

; ð11Þ

where cs and cd are, respectively, the shear and dilatational
wave-speeds and α2s;d ≡ 1 − c2=c2s;d is introduced.
The limit H → ∞ amounts to a symmetric system, in

which case η → 1, and indeed Gy vanishes in this limit.
Thus, we can expect the system to be unconditionally stable
for H → ∞. Note that Gy also vanishes in the limit H → 0.
Similarly, Gx takes the form [57]

Gx ¼
c2s

c2

�

ðα2s þ 1Þ2α−1s
1þ tanhðkHαsÞ

−
4αd

1þ tanhðkHαdÞ

�

: ð12Þ

Equipped with the results for the dynamic response
functions Giðc; kÞ, the implicit equation for the spectrum,
Eq. (10), can, in principle, be solved, at least numerically.
The equation admits a few solution branches, and in
general, its analysis is far from trivial. However, since
the purpose of the present discussion is not a complete
analysis of Eq. (10) but rather a demonstration of the
qualitative effect of the absence of geometrical reflection
symmetry, we focus here on a particular branch of
solutions, which is shown in Fig. 4(a). It is observed that
for a range of parameters, and for a finite range of wave
numbers, the solutions are unstable (Im½c� > 0). This is
direct numerical evidence that geometric asymmetry can
destabilize systems that are otherwise stable [remember
that f0ðvÞ > 0].

(a) (b) (c)

FIG. 4. Linear stability: Simplified analysis. Imaginary (a) and real (b) parts of solutions to the linear stability spectrum in Eq. (10).
Here, ImðcÞ > 0 implies an instability. Note that only one solution branch is discussed (other solution branches exist as well, but they are
not discussed here). The solid lines show numerical solutions to Eq. (10), and the dashed lines show the approximate analytic solutions
obtained by a linear expansion around c ¼ cR. The parameters used are f ¼ 0.9 and β ¼ 0.3, where γ ≡ μ=(σ0csf

0ðvÞ) is varied
according to the legend. (c) The instability threshold χc (i.e., for χ ≡ γf < χc, sliding is stable for all k) vs β≡ cs=cd. The open symbols
show direct numerical results, and the solid line is the prediction in Eq. (13).
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It seems natural at this point to ask under what conditions
this instability is observed. What are the conditions on the
various system parameters such that there will be a range of
k’s for which Im½cðkÞ� > 0? As a prelude, we perform a
dimensional analysis. Clearly, the only length scale in the
problem is H, and indeed the wave number k only appears
in the dimensionless combination kH. Thus, large (small) k
is equivalent to large (small) H, and since Gy vanishes in
both limits H → 0 and H → ∞, we expect to find unstable
modes only in a finite range kmin < k < kmax, if any.
Another dimensionless combination is γ≡μ=(σ0csf

0ðvÞ),
which is the ratio of the elastodynamic quantity μ=cs—
proportional to the so-called radiation damping factor for
sliding [23,26,75,85]—and the response of the frictional
stress to variations in the sliding velocity. As such, γ

quantifies the importance of elastodynamics, which tends
to destabilize sliding when geometrical asymmetry is
present, relative to velocity-strengthening friction, which
generically stabilizes sliding. We thus expect large γ to
promote instability, if Gy ≠ 0. In addition, as Gy is the only
possible source of instability in the problem, the appearance
of fGy is associated with destabilization [because f and Gy

enter the spectrum in Eq. (10) only through the combination
fGy]. Finally, the ratio of the twowave-speeds β≡ cs=cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − 2νÞ=ð2 − 2νÞ
p

is also a dimensionless parameter of
the system, which depends only on the bulk Poisson ratio.
To obtain analytic insight into the instability presented in

Fig. 4(a), note that solutions in this instability branch
are located near the Rayleigh wave-speed, as shown in
Fig. 4(b) (note that here cR ≃ 0.95cs). Consequently, we
expand Eq. (10) to linear order around c ¼ cR þ δc,
obtaining an explicit expression for δcðkHÞ [57]. A
consequence of this expansion is that the transition between
stable and unstable modes occurs for k’s, which approx-
imately satisfy [57]

γfGyðcR; kÞ ≈ −cR=cs: ð13Þ

This approximate stability criterion explains the existence
of an instability and in fact gives reasonable quantitative
estimates for its onset.
To see this, note that since GyðcR; kÞ [which is negative,

cf. Eq. (11) and Ref. [57]) vanishes for both k ¼ 0 and
k ¼ ∞, and attains a global minimum for k of order H−1,
Eq. (13) admits solutions only for certain values of the
product χ ≡ γf. When χ is smaller than a critical value χc,
no solutions exist, and this branch of solutions is stable for
all wave numbers. Note that this criterion has exactly the
expected structure: The instability is indeed governed by
Gy, and large γ or f promotes instability, which only
happens at a finite range of wave numbers. These pre-
dictions are quantitatively verified in Fig. 4(c). In addition,
the real and imaginary parts of the approximate solution for
δcðkHÞ [57] are added to Figs. 4(a) and 4(b) (dashed lines),

demonstrating reasonable quantitative agreement with the
full numerical solution for various parameters.
The results presented in this section demonstrate the

destabilizing role that the absence of geometrical reflection
symmetry may play in frictional dynamics. In the next
section, we significantly extend the analysis to include
more realistic friction laws and any geometric contrast.

B. Generalized analysis: State dependence, memory

length, and arbitrary geometric asymmetry

The analysis presented in the previous section adopted
two simplifying assumptions, i.e., that the frictional
response depends only on the instantaneous slip velocity
v and that the lower block is much higher than the upper
one, η → ∞. Frictional interfaces, however, are known to
also depend on the state of the interface, not just on the slip
velocity, and obviously the sliding bodies can feature any
geometric asymmetry; i.e., the system can attain any value
of η. Consequently, our goal here is to relax these
simplifying assumptions and to present a significantly
generalized analysis applicable to a broad range of realistic
frictional systems.
It is experimentally well established that the response of

frictional interfaces depends, in addition to the slip velocity
v, on the state of the interface through the (normalized) real
contact area AðϕÞ ∝ σyy(1þ ψðϕÞ) [1–3], as discussed in
relation to Eq. (4). The auxiliary internal state variable ϕ,
which represents the age or maturity of the contact and is of
time dimensions, carries memory of the history of the
interface. This implies that irrespective of the exact func-
tional form of ψðϕÞ (with dψ=dϕ > 0), the frictional
response fð·Þ in Eq. (9) depends on both v and ϕ; i.e.,
we have fðv;ϕÞ. Since f does not depend solely on the
instantaneous sliding velocity, but also on ϕ, one should
distinguish between

∂vf ≡
∂fðv;ϕÞ

∂v
and dvf ≡

df(v;ϕ0ðvÞ)

dv
; ð14Þ

where ϕ0ðvÞ is the steady-state value of ϕ.
It is also well established that after a rapid variation in v,

accompanied by an instantaneous frictional response char-
acterized by ∂vf, a new steady state is established over a
characteristic slip distance D, which can be regarded as an
interfacial memory length. This generic behavior is
described by the following evolution equation for ϕ

[1,3,77],

_ϕ ¼ g

�

vϕ

D

�

; ð15Þ

with gð1Þ ¼ 0 and g0ð1Þ < 0. While several functions gð·Þ
were proposed and extensively studied in the literature
[1,3], the only property that affects the linear stability is
g0ð1Þ. Note that if gð0Þ > 0 (corresponding to v ¼ 0), the
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equation describes frictional aging (ϕ increases linearly
with time under quiescent conditions) and that gð1Þ ¼ 0

corresponds to a steady state _ϕ ¼ 0, implying
ϕ0ðvÞ ¼ D=v. The latter describes contact rejuvenation,
where the typical contact lifetime is inversely proportional
to v.
The physics incorporated in the distinction between ∂vf

and dvf, and in the memory lengthD—within the so-called
rate-and-state friction constitutive framework—implies the
existence of two dimensionless parameters that are absent
in the simplified analysis of Sec. IVA,

Δ≡
dvf

∂vf
; ξ≡

Dcs

Hvjg0ð1Þj
: ð16Þ

Frictional interfaces generically feature ∂vf > 0 [1–3],
which is termed the “direct effect” (associated with
thermally activated rheology [3,75]). As in Sec. IVA,
we are interested in dvf > 0 (i.e., in steady-state veloc-
ity-strengthening friction), which implies a positive Δ. In

fact, Δ varies in the range 0 < Δ < 1 [23], while ξ can
attain any positive value.
Within this generalized framework, δf=δv of Eq. (10)

takes the form [57]

δf

δv
¼ ∂vf

�

1þ
Δ − 1

1 − iξ c
cs
kH

�

: ð17Þ

In the limit Δ → 1 [i.e., when there is no distinction
between ∂vf and dvf (∂vf → dvf)] and when ξ → 0

(i.e., when the memory length D becomes vanishingly
small), we obtain δf=δv → dvf. This recovers the result of
Sec. IVA, where dvf simply identifies with f0ðvÞ.
To understand the effect of Δ and ξ on frictional stability,

we need to solve Eq. (10) using Eq. (17). As we also want
to consider arbitrary values of the height ratio η, we should
first derive expressions for the interfacial elastodynamic
transfer functionGx;y for any η. The generalized result takes
the form [57]

Gx ¼
c2sð1þ α2sÞ

2(tanhðηkHαdÞ þ tanhðkHαdÞ) − 4αdαs(tanhðηkHαsÞ þ tanhðkHαsÞ)

c2αs(tanhðηkHαdÞ þ tanhðkHαdÞ)(tanhðηkHαsÞ þ tanhðkHαsÞ)
;

Gy ¼
2c2sð1þ α2sÞ

c2
tanhðkHαsÞ tanhðηkHαdÞ − tanhðkHαdÞ tanhðηkHαsÞ

(tanhðηkHαdÞ þ tanhðkHαdÞ)(tanhðηkHαsÞ þ tanhðkHαsÞ)
: ð18Þ

Note that Eqs. (11) and (12) are obtained from Eq. (18)
by taking the η → ∞ limit, which amounts to setting
tanhðηkHαiÞ to unity (since both k and Re½αi� are positive).
In addition, as expected, Gy vanishes for symmetric
systems, i.e., for η ¼ 1.
We are now ready to study the effect of the geometric

dimensionless parameter η, and of the constitutive dimen-
sionless parameters Δ and ξ, on the linear stability of
frictional interfaces. In other words, we aim at solving the
implicit linear stability spectrum in Eq. (10), with Eqs. (17)
and (18). The ultimate goal of such a generalized linear
stability analysis is to derive the stability phase diagram in
the γ [here, ∂vf replaces f0ðvÞ in the definition of γ in
Sec. IVA], f, β, η, Δ, and ξ parameter space, where the
stability boundary is a complex hypersurface in this
multidimensional space.
As it is obviously impossible to visualize this high-

dimensional stability boundary, and in order to gain clear
physical insight, we analyze this hypersurface by studying
its sections along various parameter directions. A first step
was done in Sec. IVA, where the analysis was performed
for fixed values of geometric asymmetry η, frictional
resistance f, and wave-speed ratio β, while γ varied. As
a simple velocity-dependent friction model was adopted
there, we also had Δ ¼ 1. As observed in Fig. 4(a) and
analyzed theoretically in relation to Eq. (13), an instability

emerges when γ becomes sufficiently large (here, some-
where between γ ¼ 2 and γ ¼ 3). As γ ¼ μ=ðσ0cs∂vfÞ
quantifies the importance of elastodynamics relative to
instantaneous velocity-strengthening friction, the instabil-
ity emerges when elastodynamics becomes more dominant
in the presence of large geometric asymmetry, η ¼ ∞.
Our next step is to isolate the geometric asymmetry

effect embodied in η. We therefore use the parameters of
Fig. 4(a) and 4(b), together with γ ¼ 3, and vary η over a
very broad range, essentially from η ¼ 1 (corresponding to
a symmetric system) to η ¼ ∞. Note that Im½cðkHÞ=cs�,
obtained by numerically solving Eqs. (10), (17), and (18),
is shown in Fig. 5(a). It is observed that for symmetric
systems, η ¼ 1, sliding is stable for all wave numbers. As η
is increased, Im½cðkHÞ=cs� approaches the x axis until they
first intersection when η≃ 3.3 at kH ∼Oð1Þ, signaling the
onset of instability. This result provides direct evidence for
the destabilizing role played by geometric asymmetry in
frictional sliding. As η is further increased, the system
becomes more unstable in the sense of an increased range
of unstable wave numbers and a larger growth rate.
Obviously, the result in the η ¼ ∞ limit identifies with
that of Fig. 4(a). In fact, the η ¼ ∞ analysis captures the
salient features of the instability spectrum well for η values
moderately above the critical value η≃ 3.3.
Next, we attempt to understand the effect of Δ, i.e., of a

difference between the instantaneous response ∂vf and the
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steady-state response dvf, on the sliding stability in the
presence of geometric asymmetry. For that aim, we plot in
Fig. 5(b) Im½cðkHÞ=cs� for various values ofΔ, spanning the
whole range 0 < Δ < 1, and for fixed ξ ¼ 1 and η ¼ ∞. It is
observed that as dvf decreases relative to ∂vf, i.e., as Δ

decreases, sliding becomes less stable, resulting in a broader
range of unstable wave numbers and a larger instability
growth rate. This result demonstrates the stabilizing role
played by steady-state velocity-strengthening friction in
frictional sliding. We note, though, that the qualitative
properties of the instability spectrum are rather well captured
by the Δ ¼ 1 analysis (i.e., for velocity-dependent friction,
where no distinction is made between dvf and ∂vf). We
stress that while Δ affects the properties of instability, the
origin of instability is still geometric asymmetry (i.e.,
sufficiently large η).
Finally, we explore the effect of varying the interfacial

memory lengthD, corresponding to varying ξ, on frictional
stability in the presence of geometric asymmetry. We plot
in Fig. 5(c) Im½cðkHÞ=cs� for a broad range of ξ values, and
for fixed η ¼ ∞ and Δ ¼ 0.5. It is observed that increasing
D (i.e., ξ) tends to stabilize sliding (i.e., shrink the
instability range and growth rate) as it makes the real
contact area less sensitive to slip-velocity perturbations. We
also stress here that while ξ affects the range and growth
rate of instability, its origin is geometric asymmetry (i.e.,
sufficiently large η).
The results presented in this section provide a rather

comprehensive physical picture of the implications of
geometric asymmetry on the stability of frictional sliding
and of the interplay between geometric asymmetry and
generic constitutive properties of frictional interfaces, most
notably, the effect of the state of the interface and of an
interfacial memory length. The results significantly extend
those presented in Sec. IVA, yet they show that the
simplified analysis properly captured the destabilizing
geometric asymmetry effect. We stress again that additional
solutions to Eq. (10) [with Eqs. (17) and (18)] exist. These
additional solution branches, along with a more detailed

analysis of the multidimensional stability phase diagram,
will be presented in a follow-up report.
The results presented in this section regarding the

stability of homogeneous sliding in the presence of geo-
metric asymmetry may have far-reaching implications for
the dynamics of frictional interfaces in a variety of frictional
systems. Under homogeneous loading applied to the top of
long-enough sliding bodies, as assumed in the analysis, we
predict that no homogeneous steady state will be estab-
lished experimentally under certain conditions that were
carefully quantified. Instead, the interface separating geo-
metrically asymmetric bodies will experience inhomo-
geneous slip related to the most unstable mode identified
in the analysis. This will lead to spatiotemporal stick-slip-
like motion, accompanied by distinct acoustic signature as
in squeaking door hinges.
In frictional systems where the loading configuration

promotes inhomogeneous slip, the results obtained may
still be relevant. Inhomogeneous slip in slowly driven
frictional interfaces typically takes the form of an expand-
ing creep patch. The conditions under which an expanding
creep patch spontaneously generates rapid/unstable slip, an
important process known as nucleation, may be related to
the minimal unstable wavelength in the stability analysis
presented in this section for geometrically asymmetric
systems. In particular, the minimal unstable wavelength
may determine the size at which the expanding creep patch
loses stability.
Finally, when rapid slip develops, it is typically mediated

by the propagation of rupture modes. Which mode is
actually realized in a given experimental system may be
affected by the stability analysis presented here. In par-
ticular, extended cracklike rupture modes leave behind a
homogeneous sliding state, which may be precluded under
certain conditions predicted by our analysis. Instead,
localized pulselike rupture modes may develop.
Consequently, the results presented in this section may
affect rupture-mode selection, a basic open problem in the
field of friction. Additional theoretical and experimental

(a) (b) (c)

FIG. 5. Linear stability: Generalized analysis. Im½c=cs� (i.e., the rate of exponential growth or decay of perturbations; Im½c� > 0

corresponds to instability) vs kH for a broad range of physical parameters. In all panels, the parameters are the same as in Fig. 4 with
γ ¼ 3. (a) The dependence of Im½cðkHÞ=cs� on η for Δ ¼ 1. The curve η ¼ ∞ identifies with the blue curve of Fig. 4(a). The case η ¼ 1

corresponds to a symmetric system and is thus stable for all k. (b) The dependence of Im½cðkHÞ=cs� on Δ for ξ ¼ 1 and η ¼ ∞. (c) The
dependence of Im½cðkHÞ=cs� on ξ for Δ ¼ 0.5 and η ¼ ∞.
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research should be carried out in order to fully explore these
potential implications.

V. CONCLUDING REMARKS

In this paper, combining experiments and theory, we
showed that frictional interfaces that separate bodies made
of identical materials but lack geometric reflection sym-
metry about the interface generically feature coupling
between interfacial slip and normal stress variations.
This geometric asymmetry effect is shown to account for
a sizable, and previously unexplained, normal-stress-
induced weakening effect in frictional cracks. New experi-
ments support the theoretical predictions. We then showed
that geometric asymmetry can destabilize homogeneous
sliding with velocity-strengthening friction that is other-
wise stable. These analyses demonstrate that the effect of
geometric asymmetry resembles, sometimes qualitatively
and sometimes semiquantitatively, that of material asym-
metry (the bimaterial effect).
Since no system is perfectly symmetric, we expect the

geometrically induced coupling between interfacial slip
and normal stress variations to generically exist in a broad
range of man-made and natural frictional systems.
Consequently, the coupling should be incorporated into
various theoretical approaches and engineering models, as
well as employed in interpreting experimental observa-
tions. The implications in geophysical contexts, such as in
subduction-zone sliding [cf. Fig. 1(c)], call for further
investigation.
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