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Abstract: 8 

Asian summer monsoon convection plays an important role in efficient vertical transport from the 9 

surface to the anticyclone. In this paper we investigate the potential impact of convectively transported 10 

anthropogenic nitrogen oxides (NOx) on the distribution of ozone in the Upper Troposphere and Lower 11 

Stratosphere (UTLS) from simulations with the fully-coupled aerosol chemistry climate model, 12 

ECHAM5-HAMMOZ. We performed anthropogenic NOx emission sensitivity experiments over India 13 

and China. In these simulations, anthropogenic NOx emissions for the period 2000-2010 have been 14 

increased by 38% over India and by 73% over China in accordance with satellite observed trends over 15 

India of 3.8 % per year and China of 7.3% per year. These NOx emission sensitivity simulations show 16 

that strong convection over the Bay of Bengal and the Southern slopes of the Himalayas transports 17 

Indian emissions into the UTLS. Convective transport from the South China Sea injects Chinese 18 

emissions into the lower stratosphere. Indian and Chinese emissions are partially transported over the 19 

Arabian Sea and west Asia by the tropical easterly jet. Enhanced NOx emissions over India and China 20 

increase the ozone radiative forcing over India by 0.112 W/m
2
 and 0.121 W/m

2
 respectively. These 21 

elevated emissions produces significant warming over the Tibetan Plateau and increase precipitation 22 

over India due to a strengthening of the monsoon Hadley circulation.  23 

However doubling of NOx emissions over India (73%); equal to China, produced high ozone in the 24 
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lower troposphere. It induced a reverse monsoon Hadley circulation and negative precipitation 25 

anomalies over India. The associated subsidence suppressed vertical transport of NOx and ozone into 26 

the anticyclone. 27 

Key words: Asian summer monsoon, Ozone, increase in tropospheric NOx, NOx transport, Upper 28 

troposphere and lower stratosphere. 29 

 30 

1. Introduction 31 

Rapid economic development and urbanization in Asia has resulted in an unprecedented growth 32 

in anthropogenic emissions like nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), 33 

methane (CH4,), etc. Many of these species have implications on tropospheric ozone (Wild and 34 

Akimoto, 2001; IPCC, 2001). Ground based and satellite observations show a high amount of these 35 

ozone precursors concentrated over the India and China (Sinha et al., 2014; Richter et al., 2005; Jacob 36 

et al., 1999; Zhao et al., 2013; Gu et al., 2014). Recent studies show that tropospheric ozone production 37 

over Asia is controlled by the abundance of NOx and VOCs and the ratios of these species (Sillman, 38 

1995, Lei et al., 2004, Zhang et al., 2004 and Tie et al., 2007). These studies reveal that in Asia, 39 

particularly India and China are NOx limited regions, i.e., controlling NOx in these regions would 40 

reduce ozone concentrations (Yamaji et al., 2006; Sinha et al., 2014; Fadnavis et al., 2014). Thus levels 41 

of tropospheric ozone, a key polluting agent and greenhouse gas, are controlled by NOx concentration 42 

over these regions. Recently, a positive trend of 3.8 % yr
-1

 (for the period 2003-2011) in tropospheric 43 

column NO2 over India has been reported using SCanning Imaging Absorption SpectroMeter for 44 

AtmosphericCHartographY (SCIAMACHY) observations (Ghude et al., 2013) and of 7.3% yr
-1

 (for the 45 

period 2002-2011) over China from Ozone Monitoring Instrument (OMI) observations (Schneider and 46 

van der A, 2012). Apart from anthropogenic sources, lightning also contributes to the production of 47 

NOx. Over the Asian region, in the middle and upper troposphere, lightning contributes ~40% to NOx 48 
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and 20% to ozone production during monsoon season (Tie et al 2001; Fadnavis et al 2015). The upper 49 

tropospheric ozone concentration is determined both by in-situ production as well as from convective 50 

transport from the boundary layer (Sǿvde et al., 2011). 51 

Ozone in the troposphere absorbs relatively little UV radiation but it has a huge climatic impact 52 

(Lacis et al., 1990). The estimated global average radiative forcing increasing tropospheric ozone since 53 

pre-industrial times is estimated to be +0.35 ± 0.15 Wm
−2

 (IPCC, Ramaswamy et al., 2001). Previous 54 

studies revealed that ozone perturbations exert a large influence on temperature near the surface and 55 

tropopause (e.g., Thuburn and Craig, 2002; Foster and Shine 1997). Thus the tropospheric ozone 56 

distribution and its variability at different altitudes influence the thermal structure of the atmosphere. 57 

Climate change due to ozone variations is highest near the tropopause because the greenhouse 58 

efficiency per molecule is highest there (Lacis et al, 1990; Forster and Shine, 1997; Riese et al., 2012). 59 

A study based on ACCMIP models reports that NOX and CH4 are the greatest contributors in 60 

determining ozone radiative forcing (Stevenson et al., 2013). 61 

Asian Summer Monsoon (ASM) convection efficiently transports Asian pollutants from the 62 

boundary layer into the Upper Troposphere and Lower Stratosphere (UTLS) (Randel and Park, 2006; 63 

Randel et al. 2010; Fadnavis et al., 2013, 2015). Studies pertaining to modeling and trajectory analysis 64 

confirm this finding (Li et al., 2005; Park et al., 2007; Randel et al., 2010; Chen et al., 2012; Vogel et 65 

al., 2015). Satellite observations show the confinement of a number of chemical constituents like water 66 

vapor (H2O), CO, ethane (C2H6), CH4, nitrous oxide (N2O), hydrogen cyanide (HCN), and aerosols, 67 

within the ASM anticyclone (Randel et al. 2010; Li et al., 2005; Randel and Park, 2006; Lawrence et 68 

al., 2011) which has potential implication on stratospheric chemistry and dynamics. These studies 69 

indicate that the rise in anthropogenic emissions over the ASM region alters the chemical composition 70 

of the UTLS (Lawrence et al., 2011; Fadnavis et al, 2014, 2015) during the monsoon season. Another 71 

prominent feature of the satellite observations is an ozone minimum in the ASM anticyclone (near 100 72 
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hPa) (Gettelman et al., 2004; Konopka et al., 2010; Braesicke et al., 2011). This ozone minimum is 73 

linked to ozone poor air masses arriving from the Bay of Bengal and Arabian Sea. Balloonsonde 74 

observations show that ozone variations near the anticyclone are strongly correlated with temperature 75 

near the tropopause (Tobo et al., 2008).  Thus observations show that convectively lifted air masses 76 

arriving in the anticyclone are ozone poor but rich in ozone precursors. Thus the linkage of low ozone 77 

and high ozone precursors with temperature variation in the anticyclone is an open question. In this 78 

study we ask the question ‘how do rising Asian NOX (an important ozone precursor) emissions and 79 

associated ozone production affect the ozone radiative forcing and monsoon circulation?’  For this we 80 

perform anthropogenic NOx emission sensitivity experiments using the state-of-the-art ECHAM5-81 

HAMMOZ (European Centre General Circulation Model version5) chemistry climate model (Roeckner 82 

et al., 2003; Horowitz et al., 2003; Stier et al., 2005). From these simulations ozone radiative forcing 83 

for different anthropogenic NOx emission scenarios is estimated. Associated temperature and monsoon 84 

circulation changes are also reported. The paper is organized as follows: data description and model 85 

setup are discussed in section 2; results are discussed in section 3. Section 4 comprises of discussion 86 

followed by conclusion in section 5. 87 

 88 

2. Data description and Model setup 89 

2.1 Satellite measurement 90 

 Earth Observing System (EOS) microwave limb sounder (MLS) is a NASA Aura satellite which 91 

flies in the polar sun-synchronous orbit. It measures the thermal emissions at millimeter and sub- 92 

millimeter wavelengths (Waters et al., 2006). It performs 240 limb scans per orbit with a footprint of 93 

∼6 km across-track and ∼200 km along-track, providing ∼3500 profiles per day. MLS also measures 94 

the vertical profiles of temperature, ozone, CO, H2O, and many other constituents in the mesosphere, 95 

stratosphere and upper troposphere (Waters et al., 2006). In the UTLS, MLS has a vertical resolution of 96 
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3 km. MLS vertical profiles of ozone show good agreement with the Stratospheric Aerosol and Gas 97 

Experiment II  (SAGE-II), Halogen Occultation Experiment (HALOE), Atmospheric Chemistry 98 

Experiment (ACE) and ozonesonde measurements (Froidevaux et al.,2006). The MLS ozone profiles 99 

are considered to be useful in the range of 215 – 0.46 hPa (Livesey et al., 2005). In this study we 100 

analyze the MLS level 2 (version 4) ozone mixing ratios data for the period 2004 – 2013. The data has 101 

been gridded at 8.3ºx3º. This data can be accessed from http://mls.jpl.nasa.gov/. For comparison 102 

simulated ozone is convolved with the MLS averaging kernel. Details of MLS averaging kernels are 103 

documented by Livesey et al. (2011). 104 

 105 

2.2 Model simulation and experimental setup 106 

We employ the aerosol-chemistry-climate model ECHAM5-HAMMOZ which comprises the 107 

general circulation model ECHAM5 (Roeckner et al., 2003), the tropospheric chemistry module, MOZ 108 

(Horowitz et al 2003) and the aerosol module, Hamburg aerosol model (HAM) (Stier et al., 2005). It 109 

includes NOx, VOC and aerosol chemistry. The gas phase chemistry is based on the chemical scheme 110 

provided by the MOZART-2 model (Horowitz et al., 2003) which includes detailed chemistry of the 111 

OX-NOX hydrocarbon system with 63 tracers and 168 reactions. The O(
1
D) quenching reaction rates 112 

were updated according to Sander et al., (2003) and isoprene nitrates chemistry according to Fiore et 113 

al., (2005). The dry deposition in ECHAM5-HAMMOZ follows the scheme given by Ganzeveld and 114 

Lelieveld (1995). Soluble trace gases like HNO3 and SO2 are also subject to wet deposition. In-cloud 115 

and below-cloud scavenging follows the scheme given by Stier et al. (2005). 116 

 The model is run at a T42 spectral resolution corresponding to about 2.8°×2.8° in the horizontal 117 

dimension and 31 vertical hybrid σ – p levels from the surface to 10 hPa. The details of model 118 

parameterizations, emissions and validation are described by Fadnavis et al. (2013; 2014; 2015) and 119 

Pozzoli et al. (2008a, b; 2011). The base year for trace gas emissions is taken as 2000. Each member of 120 
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our sensitivity study consists of continuous simulations for eleven years from 2000 to 2010. For each 121 

simulation emissions were the same. Meteorology varied due to varying sea surface temperature (SST) 122 

and sea ice (SIC). The AMIP2 SSTs and SIC representative of the period 2000 – 2010 were specified as 123 

a lower boundary condition.  124 

In order to understand the impact of increasing NOx emissions on the distribution of ozone in 125 

the UTLS, simulations were performed for the period 2000 – 2010. The experimental set up is the same 126 

as described by Fadnavis et al., (2015). The four experiments analyzed in this study are (1) A reference 127 

experiment (CTRL) and three sensitivity experiments (referred to as experiments 2 - 4), where the NOX 128 

emissions over India and China are scaled in accordance with the observed trends. In experiment (2), 129 

NOX emissions are increased over India by 38% (Ind38), in experiment (3) increases that over China 130 

by 73% (Chin73) are prescribed. In order to analyze the effects of equal NOx emissions over India and 131 

China, NOx emissions are increased over India by 73% over India (Ind73) in experiment (4). The 132 

emission perturbations were obtained from observed NO2 trends of 3.8% per year over India (Ghude et 133 

al., 2013) and 7.3% per year over China (Schneider and van der A, 2012). Hiboll et al., (2013) also 134 

reported similar increasing NOx values over megacities in India and China. 135 

To calculate the heating associated with ozone changes over India and China, we use the 136 

radiative transfer model Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). This 137 

model is designed and developed by the University of California, Santa Barbara (Ricchiazzi et al., 138 

1998) and is based on a collection of well-tested and reliable physical models. We used eight streams in 139 

the radiative transfer calculation and computations were made for solar zenith angles at every 5°. 140 

 141 

3. Results 142 

3.1 Comparison with AIRS satellite measurements in the UTLS 143 

 Figure 1(a) shows the spatial distribution of MLS ozone mixing ratios at 100 hPa. The 144 
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distribution of simulated ozone mixing ratios at the nearest model level, 90 hPa is plotted in figure 1(b). 145 

ECHAM5-HAMMOZ simulation is smoothed with averaging kernel of MLS. The winds plotted in 146 

figure 1(a) and 1 (b) show the extent of the monsoon anticyclone (20
º
E-120

º
E). Winds plotted in figure 147 

1(b) depict the extent of the monsoon anticyclone (20
º
E-120

º
E). The spatial pattern of low ozone 148 

concentrations in the monsoon anticyclone is well simulated in the model.  In the recent past, low 149 

ozone mixing ratios (~40-160 ppbv) in the monsoon anticyclone have been reported from MLS (90-140 150 

ppbv), MIPAS (80-120 ppbv), SAGE II (<150ppbv) measurements (Kunze et al., 2010; Randel et al., 151 

2001; Randel and Park 2006; Park et al., 2007). Vertical profiles of ozonesonde (averaged for the 152 

monsoon season during 2001-2009) at Indian stations, Delhi (28.61ºN, 77.23ºE), Pune (18.52ºN, 153 

73.85ºE) and Thiruvananthapuram (8.48ºN, 76.95E) are compared with MLS measurements and 154 

ECHAM5-HAMMOZ simulated ozone mixing ratios in figures 1(c)-(e). These figures depict that 155 

vertical variation of simulated ozone show good agreement with ozonesonde and MLS observations. 156 

Fadnavis et al., (2015) compared the model simulation with aircraft observations over the various 157 

regions all over the globe during the monsoon season. This study reported a reasonable agreement for 158 

PAN, NOx, HNO3 and ozone mixing ratio.  159 

 160 

3.2 Transport of enhanced NOx emissions into the UTLS  161 

 Recent satellite observations and model simulations established the impact of convective 162 

transport of boundary layer pollution into the ASM anticyclone during the Asian monsoon season 163 

(Gettelman et al., 2004; Randel et al., 2010; Fadnavis et al., 2013, 2014, 2015). These pollutants are 164 

further transported across the tropopause as evident in satellite observations of, e.g. water vapour (Bian, 165 

2012), hydrogen cyanide (HCN) (Randel, 2010), CO (Schoeberl et al., 2006), Peroxyacetyl nitrate 166 

(PAN), aerosols (Vernier et al., 2015, Fadnavis et al 2013) etc. To understand the influence of monsoon 167 

convection on the vertical distribution of NOx we show zonal and meridional cross sections over India 168 
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and China. The vertical distribution of NOx averaged for the monsoon season over the Indian latitudes 169 

(8°-35°N), and Chinese latitudes (20°-40°N) as obtained from CTRL simulations is shown in the 170 

supplementary figures S1(a) and S1(b) respectively. These figures show elevated levels of NOx 171 

extending from the surface to the upper troposphere (UT) over India and China. The wind vectors 172 

along with the distribution of cloud droplet number concentration and ice crystal number concentration 173 

together, (Figure S2(a) and S2(b)) indicate strong convective transport from the Bay of Bengal (BOB), 174 

southern slopes of Himalayas, and south China Sea which might lift the boundary layer NOx to the 175 

upper troposphere.  176 

During the monsoon season, the NOx distribution in the UTLS is influenced by lightning apart 177 

from transport from anthropogenic sources. In this season, lightning activity is highest in Asia 178 

(Ranalkar and Chaudhari, 2009; Penki and Kamra, 2013) compared to the other monsoon regions 179 

(North America, South America and Africa). However, in our simulations there is no contribution from 180 

lightning.  181 

We show longitude-pressure (Figures 2(a)-(c)) and latitude-pressure sections (Figures 2(d)-(f)) 182 

of anomalies of anthropogenic NOx obtained from Ind38, Ind73, Chin73 with respect to CTRL 183 

simulations. The black arrows indicate the anomalies of wind vectors. Ind38 and Chin73 simulations 184 

(Figures 2(a) and 2(d)) show that the convective winds at the southern flank of the Himalayas (80º-185 

90°E) and over the Bay of Bengal lift up the enhanced NOx emissions to the upper troposphere (UT). 186 

The majority of the outflow is into the UT and only part of it is transported into the lower stratosphere. 187 

Cross tropopause transport due to convection over South China Sea is evident in the Chin73 simulation 188 

(Figure 2(c) and 2(f)). Previous studies also indicate significant vertical transport due to strong 189 

monsoon convection from the southern slopes of Himalayas (Fu et al., 2006, Fadnavis et al., 2013; 190 

2014) and the South China sea (Park et al 2009; Chen et al., 2012), which is in agreement with our 191 

results. In the upper troposphere, NOx is transported over Iran and Saudi Arabia along the descending 192 
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branch of circulation.  193 

However the simulation with doubled NOx emissions over India (Ind73) does not show cross 194 

tropopause transport. The wind anomalies show a descending branch over central India (~20°N, 75°E) 195 

(Figures 2(b) and 2(e)) which might have inhibited the cross-tropopause transport in the Ind73 196 

simulation. The descending wind anomalies may be related to ozone radiative forcing and associated 197 

temperature changes (discussed later in section 4).  198 

Figures 2(d) and 2(f) also indicate transport of NOx from India and China across the tropopause 199 

and entrainment into the tropical pipe. Garny and Randel (2013) and Randel et al. (2010) also reported 200 

that pollution transported by Asian monsoon convection enters the deep stratosphere via the tropical 201 

pipe.  202 

 203 

3.3 Impact of enhanced anthropogenic NOx on the tropospheric ozone distribution  204 

Tropospheric ozone is a radiatively active trace gas (Ramanathan et al., 1987) therefore it is 205 

important to know the impact of enhanced NOx emissions on tropospheric ozone production (Derwent, 206 

1990). We estimate the change in ozone production due to enhanced NOx emissions in the Ind38, Ind73 207 

and Chin73 simulations with respect to CTRL. The longitude-pressure cross sections of changes in 208 

amount of net ozone production (%) over India and China are shown in figures 3(a)-(c). It can be seen 209 

that at the altitudes below 300 hPa there is ozone production and loss varying in between -60% to 210 

+60%. In the upper troposphere (300-150hPa), the estimated amount of net ozone production in Ind38 211 

and Ind73 simulation is ~5-10% and that from Chin73 simulation is ~10-30%. Comparison of figures 2 212 

and 3 show that ozone production by NOx photolysis occur in the regions where there is a transport of 213 

NOx. In Ind73 simulation there is no change in ozone production near the tropopause as the NOx 214 

emissions do not reach up to these altitudes (Figures 2(b) and 2(e)). In the Ind73 simulation there is 215 

significant increase in net ozone production (~40-90% between 1000-500 hPa) over the Indo Gangetic 216 
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Plain (figure not included).  217 

Figures 4(a)-(c) show the longitude-pressure distribution of ozone mixing ratio anomalies 218 

obtained from Ind38 and Ind73 averaged over 8°-35°N, and Chin73 over 20°-45°N. Although the air 219 

mass in the monsoon anticyclone is poor in ozone (Figure 1(b)), the elevated ozone anomalies in 220 

response to increased NOx emissions are seen in figure 4 (in the Ind38 and Chin73 simulations). This 221 

may be partially due to transported ozone via ASM convection and partially due to production of ozone 222 

(Figures 3 and 4); there is no contribution from lightning in our simulations. It can be seen from figures 223 

4(a)-(c) that ozone levels are enhanced near 300-200 hPa over Arabia. This may be due to the ASM 224 

vertical convective transport and subsequent horizontal transport in the monsoon anticyclone (Randel et 225 

al., 2010, Garny and Randel, 2013; Vogel et al., 2015).  226 

Latitude-pressure cross section of ozone anomalies plotted in figures 4(d) and 4(f) show that 227 

convection over the Bay of Bengal, southern slopes of the Himalayas and the South China Sea lifts 228 

ozone from India and China into the upper troposphere and it is then transported across the tropopause 229 

into the tropical pipe. Ozone and NOx transported across the tropopause will enhance their amount in 230 

the surf mixing zone above the tropopause (Vogel et al., 2015). In the lower stratosphere there will be 231 

ozone production by photolysis from transported NOx. 232 

Doubling of NOx emissions over India (Ind73) results in a descending branch of circulation 233 

over central India (Figures 4(b) and 4(e)). This subsidence suppressed the vertical transport of ozone 234 

across the tropopause. It is also evident in NOx distribution (Figures 2(b) and 2(e)). As discussed 235 

earlier, this subsidence may be related to temperature changes due to ozone radiative forcing and 236 

heating rates as there is significant increase in ozone production over the Indo Gangetic plain (1000 – 237 

500 hPa) (discussed in section 4). 238 

 239 

 3.4 Ozone distribution in the anticyclone 240 
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  We estimate changes in NOx and ozone in the monsoon anticyclone from Ind38, Ind73 and 241 

Chin73 simulations with respect to the CTRL simulation. The distribution of these species is shown at 242 

110 hPa as representative for the anticyclone. Figures 5(a)-(c) depict percentage changes in NOx 243 

mixing ratios for Ind38, Ind73 and Chin73 simulations. A maximum in the NOx anomalies in the ASM 244 

anticyclone (20°E to 120°E) is seen in all the simulations. Ozone anomalies are high at the eastern part 245 

of monsoon anticyclone since convective injection into the anticyclone occurs at the eastern part of 246 

anticyclone (Fadnavis et al., 2013).  Percentage increase in NOx amounts in the Ind38 simulation is 247 

higher (Figure 5(a)) than that in the Ind73 simulation (Figure 5(b)). This is mainly due to descending 248 

motion over the central India, as seen in the previous sections. However, the Chin73 simulation shows 249 

higher values of increasing NOx (>18%) in the monsoon anticyclone (Figure 5(c)). In the anticyclone, 250 

the increase in ozone mixing ratios in Ind38 simulation is 1-3%, Ind73 is 1-5% and Chin73 is 1-8%. 251 

These figures show that easterly jet transport NOx and ozone (from India and China) to Saudi Arabia, 252 

Iran and Iraq.   253 

 254 

4. Discussion 255 

Increase in ozone mixing ratios may enhance ozone radiative forcing and exert warming 256 

(Brasseur, 1997). We estimate anomalies in ozone radiative forcing at the top of the atmosphere for 257 

Ind38, Chin73, Ind73 with respect to CTRL simulation over central India (20º-30ºN, 75º-85ºE) and 258 

China (30º-45ºN, 100º-135ºE). The increase in ozone radiative forcing over India, in the Ind38 259 

simulation is 0.112 W/m
2
, and in the Chin73 simulation is 0.121 W/m

2
. In comparison, the estimated 260 

global average radiative forcing due to increases in tropospheric ozone since pre-industrial times is 261 

estimated to be +0.35 ± 0.15 Wm
−2

 (Brasseur et al., 1997; IPCC, Ramaswamy et al., 2001).  262 

Further, we analyze the temperature anomalies for the Ind38, Ind73 and Chin73 simulations. 263 

Figures 6(a)-(c) show the zonal distribution of temperature anomalies. These simulations show surface 264 
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warming over the 30º-40ºN, regions covering North India and North China. The striking feature evident 265 

in Ind38, and Chin73 simulations is anomalous warming over the Tibetan Plateau while it is subdued in 266 

Ind73 simulation.  267 

 In order to understand the atmospheric heating caused due to ozone, we calculate the ozone 268 

heating rate using the radiative transfer model, SBDART. ECHAM5-HAMMOZ model simulated 269 

temperature, pressure, as well as water vapour concentration and ozone concentrations at various levels 270 

are incorporated into the SBDART model in order to estimate the ozone heating rate in the vertical. 271 

Figure 7(a) shows the vertical profile of ozone radiative heating rate as obtained from CTRL simulation 272 

averaged over Indian (70º-94ºE, 20º-30ºN) and Chinese (70º-100ºE, 30º-40ºN) regions. It shows a high 273 

value of ~ 0.003- 0.009 K/day at ~1-4 km. A net radiative heating rate of 0.004 – 0.008 K/day in the 274 

troposphere due to changes in ozone was earlier reported by Ramaswamy and Bowen (1994). 275 

Anomalous warming over the Tibetan plateau seen in Figure 6 may be due to heating caused by 276 

ozone. Figure 7(b) shows the vertical distribution of anomalies in ozone heating rates averaged over 277 

Tibetan plateau (70-100°E, 20-40°N). Positive ozone heating rate anomaly (0.0005-0.0001 K/day) is 278 

seen below14 km in Ind38 and Chin73, on the contrary, Ind73 shows negative anomalies in ozone 279 

heating rate below 8 km. In the upper troposphere (8 – 14 km) ozone heating rates are positive in all the 280 

simulations. They are less in Ind73 (2.09 × 10
-6

 – 4.5 × 10
-6

 K/day) as compared to Ind38 (1.91 × 10
-5

 – 281 

2.74 × 10
-5

 K/day) and Chin73 (2.17 × 10
-5

 - 2.99 × 10
-5 

K/day).  The estimated heating rates over the 282 

Indo Gangetic plain are ~ 3× 10
-4

 K/day (averaged over 1000-800 hPa) this may be due to high amount 283 

of ozone production.  Ozone heating rate anomaly of ±2 × 10
−4

 K/day was previously reported by Guo 284 

et al., 2008, over East Asia and the Tibetan plateau region.  285 

From figures 3, 6 and 7 it can be said that doubling of NOx emissions (Ind73 simulation) over 286 

India increases net ozone production over Indo Gangetic plain. Enhanced ozone production leads to 287 

anomalous ozone heating in the lower troposphere over the Indo Gangetic plain (~3 × 10
-4

 K/day). This 288 
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elicited reversal of monsoon Hadley cell circulation. The descending branch of monsoon Hadley cell 289 

circulation over central India (figures 2 and 4) resisted vertical transport of ozone which resulted in 290 

subdued Tibetan plateau warming.  291 

The meridional temperature gradient in the upper troposphere over the Tibetan plateau during 292 

the monsoon is one of the key factors responsible for the ASM circulation (Flohn 1957; Yanai et al., 293 

1992; Meehl, 1994; Li and Yanai, 1996; Wu and Zhang, 1998). Flohn (1957, 1960) suggested that 294 

warming over the Tibetan plateau leads to a reversal of the meridional temperature gradient triggering 295 

large-scale change in the general circulation over Asia. The warm ascending air above the Tibetan 296 

plateau gradually spreads southward and descends over the northern Indian Ocean. The south-westerly 297 

winds at the surface on the other hand complete the Hadley cell. This local circulation system releases 298 

latent heat and further maintains the Tibetan high warm core. Thus heating over the Tibetan plateau 299 

leads to increased Indian summer monsoon rainfall by enhancing the cross-equatorial circulation and 300 

concurrently strengthening both the Somali Jet and the westerly winds that bring rainfall to India 301 

(Rajagopalan and Molnar, 2013, Vinoj et al., 2014). Goswami et al., (1999) also reported that there is a 302 

strong correlation between Hadley circulation and monsoon precipitation. 303 

Figures 8(a)-(c) depict the monsoon Hadley cell circulation (averaged over 70ºE-110ºE) 304 

obtained from the Ind38 Ind73 and Chin73 simulations. The Ind38 and Chin 73 simulations show 305 

strengthening of the Hadley circulation; a strong ascending branch of the Hadley cell around 20ºN 306 

(Figure 8(a)), whereas it is reversed in Ind73 simulation (Figure 8(b)). Consequently, precipitation 307 

anomalies over the Indian region are positive (0.3 – 0.9 mm/day) in Ind38 and Chin73 simulations 308 

(figure 8(d)) whereas they are negative in Ind73 simulation (-0.3 – -0.6 mm/day) (Figure 9(e)). Thus 309 

enhanced Indian and Chinese NOx emissions increases warming over the Tibetan plateau by ozone 310 

heating and enhances precipitation over India via strengthening Hadley circulation. Whereas doubling 311 
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of NOx emissions over India produced high amount of ozone over the Indo Gangetic plain. Related 312 

ozone heating in the lower troposphere reverses the monsoon Hadley circulation and thereby resulted in 313 

negative precipitation anomalies. 314 

 315 

5. Conclusions 316 

 In this paper we investigate the potential impacts of enhanced anthropogenic NOx emissions on 317 

ozone production and distribution during the monsoon season using the state-of-the-art ECHAM5-318 

HAMMOZ model simulations. We performed sensitivity experiments for anthropogenic NOx 319 

enhancement, 38% over India (Ind38 simulation) and 73% over China (Chin73 simulation) in 320 

accordance with observed trends 3.8% per year over India and 7.3% per year over China (Ghude et al., 321 

2013; Schneider and van der A, 2012). In another experiment, anthropogenic NOx emissions over India 322 

are doubled (73%), equal to China (Ind73 simulation).  323 

These simulations show that increase in anthropogenic NOx emissions (over India and China) 324 

increases ozone production in the lower and mid-troposphere. The monsoon convection at the southern 325 

flank of the Himalayas (80-90°E) and over the Bay of Bengal lifts up the NOx and ozone from India 326 

across tropopause into the lower stratosphere. Cross tropopause transport also occurs over China due to 327 

convection over the South China Sea. These air masses are then transported deeper into the stratosphere 328 

via the tropical pipe.  329 

Increase in NOx emissions in Ind38 and Chin73 simulations increases ozone radiative forcing 330 

over India by 0.112 W/m
2
 and 0.121 W/m

2 
respectively.  Enhanced ozone production (Ind38 and 331 

Chin73 simulations) increases ozone heating rates which cause anomalous warming over the Tibetan 332 

plateau. Doubling of NOx emissions over the India region (Ind73 simulation) produces anomalous 333 

heating near surface over the Indo Gangetic plain (~3 × 10
-4

 K/day) due to high amount of ozone 334 
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production (~40-90%). This elicited subsidence over central India (via reversal of monsoon Hadley 335 

circulation) and resisted vertical transport of ozone which resulted in subdued Tibetan plateau warming.  336 

In Ind38 and Chin73 simulations, anomalous warming over the Tibetan plateau resulted in 337 

strengthening of the monsoon Hadley circulation over India and elicited positive precipitation (0.3 – 338 

0.9 mm/day) anomalies over India. However, doubling of NOx emissions over India (Ind73) induced 339 

reverse Hadley circulation due to anomalous heating, in the lower troposphere over the Indo Gangetic 340 

plain. The descending branch of the Hadley circulation resisted the cross tropopause transport of ozone 341 

and NOx. The reversal of the Hadley circulation and concurrent subdued warming over the Tibetan 342 

plateau resulted in negative precipitation anomalies (-0.3 – -0.6 mm/day) over India.  343 

344 
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 680 

Figure 1: Distribution of ozone mixing ratio (ppbv) during the monsoon season (June-September) 681 

obtained from (a) MLS observations at 100 hPa. Black arrows indicate wind vectors from ERA-682 

Interim. Show the same but obtained from (b) ECHAM5-HAMMOZ CTRL simulation at 90 hPa. 683 

Black arrows indicate simulated wind vectors. ECHAM5-HAMMOZ simulation is smoothed with 684 

averaging kernel of MLS. Vertical distribution of seasonal mean (June-September) ozone mixing ratios 685 

(ppb) as obtained from ozonesonde (2001-2009), MLS (2004-2013) and ECHAM5-HAMMOZ CTRL 686 

simulation at Indian stations, (c) Delhi (d) Pune (e) Thiruvananthpuram. 687 

688 
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Figure 2: Longitude pressure cross-section of NOx anomalies (%) averaged for the monsoon season 706 

(June-September) obtained from (a) Ind38 (averaged over 8ºN-35ºN), (b) Ind73 (averaged over 8ºN-707 

35ºN), (c) Chin73 (averaged over 20ºN-45ºN) simulations. Latitude pressure cross-section of NOx 708 

anomalies (%) averaged  for the monsoon season (June-September) obtained from (d) Ind38 (averaged 709 

over 70ºE-90ºE), (e) Ind73 (averaged over 70ºE-90ºE), (f) Chin73 (averaged over 85ºE-120ºE) 710 

simulations. Black arrows indicate wind vectors. The vertical velocity field has been scaled by 300. 711 

The dashed line represents the tropopause. 712 
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Figure 3: Longitude pressure cross-section of changes in net ozone production (%) (due to enhanced 725 

NOx with respect to CTRL simulation) averaged for the monsoon season (June-September) obtained 726 

from (a) Ind38 (averaged over 8ºN-35ºN), (b) Ind73 (averaged over 8ºN-35ºN), (c) Chin73 (over 20ºN-727 

45ºN) simulations. The dashed line represents the tropopause. 728 

729 
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Figure 4:  Longitude pressure cross-section of ozone anomalies (%) averaged for the monsoon season 747 

(June-September) obtained from (a) Ind38 (averaged over 8ºN-35ºN), (b) Ind73 (averaged over 8ºN-748 

35ºN), (c) Chin73 (averaged over 20ºN-45ºN) simulations. Latitude pressure cross-section of ozone 749 

anomalies (%) averaged for the monsoon season (June-September) obtained from (d) Ind38 (averaged 750 

over 70ºE-90ºE), (e) Ind73 (averaged over 70ºE-90ºE), (f) Chin73 (averaged over 85ºE-120ºE) 751 

simulations. Black arrows indicate wind vectors. The vertical velocity field has been scaled by 300. 752 

The dashed line represents the tropopause. 753 

754 
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 765 

Figure 5: Latitude-longitude cross-section of NOx anomalies (%) averaged for the monsoon season 766 

(June-September) at 110 hPa obtained from (a) Ind38 (b) Ind73 (c) Chin73 simulations. (d-f) Show the 767 

same but for ozone (%) at 110 hPa for (d) Ind38 (e) Ind73 (f) Chin73 simulations. Black arrows 768 

indicate horizontal winds at 110 hPa. 769 
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Figure 6: Latitude pressure cross-section of temperature anomalies (K) averaged for the monsoon 781 

season (June-September) obtained from (a) Ind38 (averaged over 70ºE-94ºE) (b) Ind73 (averaged over 782 

70ºE-94ºE) and (c) Chin73 (averaged over 70ºE-100ºE) simulations. Black arrows indicate wind 783 

vectors. The vertical velocity field has been scaled by 300.  784 
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Figure 7: Vertical profile of (a) ozone heating rate (K/day) obtained from CTRL simulations averaged 796 

over India (70º-94ºE, 20º-30ºN) and China (70º-100ºE, 30º-40ºN), (b) ozone heating rate 797 

anomaly(K/day) averaged over Tibetan Plateau (70º-100ºE, 20º-30ºN)  obtained from Ind38, Ind73 and 798 

Chin73 simulations. 799 
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Figure 8: Change in the meridional circulation due to enhanced NOX emissions averaged for the 818 

monsoon season (June-September) and over 70ºE-110ºE for (a) Ind38 (b) Ind73 (c) Chin73 819 

simulations. Shaded contours indicate the anomalies in vertical velocity (m/s). The vertical velocity 820 

field has been scaled by 300. Precipitation anomalies (mm/day) averaged for the monsoon season 821 

(June-September) obtained from (d) India38 (e) Ind73 (f) Chin73 simulations with respect to CTRL. 822 
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