000825138 001__ 825138
000825138 005__ 20240619083531.0
000825138 0247_ $$2doi$$a10.1038/ncomms12112
000825138 0247_ $$2Handle$$a2128/13339
000825138 0247_ $$2WOS$$aWOS:000379114400001
000825138 0247_ $$2altmetric$$aaltmetric:9121033
000825138 0247_ $$2pmid$$apmid:27353002
000825138 037__ $$aFZJ-2016-07615
000825138 041__ $$aEnglish
000825138 082__ $$a500
000825138 1001_ $$0P:(DE-HGF)0$$aGârlea, Ioana C.$$b0
000825138 245__ $$aFinite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals
000825138 260__ $$aLondon$$bNature Publishing Group$$c2016
000825138 3367_ $$2DRIVER$$aarticle
000825138 3367_ $$2DataCite$$aOutput Types/Journal article
000825138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482389750_974
000825138 3367_ $$2BibTeX$$aARTICLE
000825138 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825138 3367_ $$00$$2EndNote$$aJournal Article
000825138 520__ $$aWhen liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.
000825138 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000825138 588__ $$aDataset connected to CrossRef
000825138 7001_ $$0P:(DE-HGF)0$$aMulder, Pieter$$b1
000825138 7001_ $$0P:(DE-HGF)0$$aAlvarado, José$$b2
000825138 7001_ $$0P:(DE-Juel1)130607$$aDammone, Oliver$$b3
000825138 7001_ $$0P:(DE-HGF)0$$aAarts, Dirk G. A. L.$$b4
000825138 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b5$$ufzj
000825138 7001_ $$0P:(DE-HGF)0$$aKoenderink, Gijsje H.$$b6
000825138 7001_ $$0P:(DE-HGF)0$$aMulder, Bela M.$$b7$$eCorresponding author
000825138 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms12112$$gVol. 7, p. 12112 -$$p12112 -$$tNature Communications$$v7$$x2041-1723$$y2016
000825138 8564_ $$uhttps://juser.fz-juelich.de/record/825138/files/ncomms12112.pdf$$yOpenAccess
000825138 8564_ $$uhttps://juser.fz-juelich.de/record/825138/files/ncomms12112.gif?subformat=icon$$xicon$$yOpenAccess
000825138 8564_ $$uhttps://juser.fz-juelich.de/record/825138/files/ncomms12112.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825138 8564_ $$uhttps://juser.fz-juelich.de/record/825138/files/ncomms12112.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825138 8564_ $$uhttps://juser.fz-juelich.de/record/825138/files/ncomms12112.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825138 8564_ $$uhttps://juser.fz-juelich.de/record/825138/files/ncomms12112.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825138 909CO $$ooai:juser.fz-juelich.de:825138$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b5$$kFZJ
000825138 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000825138 9141_ $$y2016
000825138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825138 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000825138 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000825138 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000825138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000825138 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000825138 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825138 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825138 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825138 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825138 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825138 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000825138 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825138 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000825138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825138 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825138 920__ $$lyes
000825138 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000825138 9801_ $$aFullTexts
000825138 980__ $$ajournal
000825138 980__ $$aVDB
000825138 980__ $$aUNRESTRICTED
000825138 980__ $$aI:(DE-Juel1)ICS-3-20110106