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Finite particle size drives defect-mediated domain
structures in strongly confined colloidal liquid
crystals
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When liquid crystals are confined to finite volumes, the competition between the surface

anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of

these materials gives rise to a host of intriguing phenomena involving topological defect

structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays,

these defect structures are independent of the size of the molecules and well described by

continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers

have micron-sized lengths, so continuum descriptions are expected to break down under

strong confinement conditions. Here, we show, by a combination of computer simulations

and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers,

that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symme-

trical domain structures. These finite-size effects point to a potential for designing optically

active microstructures, exploiting the as yet unexplored regime of highly confined liquid

crystals.
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Forschungszentrum Jülich, 52425 Jülich, Germany. w Present address: Department of Mechanical Engineering, Massachusetts Institute of Technology, 77

Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA (J.A.). Correspondence and requests for materials should be addressed to B.M.M.

(email: mulder@amolf.nl).

NATURE COMMUNICATIONS | 7:12112 | DOI: 10.1038/ncomms12112 | www.nature.com/naturecommunications 1



T
he study of liquid crystals in confinement has a history
stretching back to the days of the development of the first
twisted nematic display cells1. Confined liquid crystals

attracted the attention of fundamental scientists, as they provided
a window on a host of intriguing phenomena.

First and foremost, this concerned the study of topological
defects, which in these systems arise both spontaneously or can be
induced and modulated through the geometry of confinement
and the imposed boundary conditions. Starting in the 1970s a
major effort was undertaken to understand and classify these
defect structures2–5. In the 1980s the focus was on spherical
confinement geometry5,6, spurred in part by the development of
polymer dispersed liquid-crystal displays7. Later on, it was
realized that colloidal particles, suspended in a liquid-crystal
and surface-treated to impose specific orientational anchoring
conditions, create defect structures that have a major role in
mediating the interactions between these particles8–12. An
overview of this field can be found in the comprehensive review
by Kleman and Lavrentovich13. Interest in this area has remained
unabated, and more recent work has covered effects such as
frustration14, complex defect dynamics15,16, bistability17 and
tuneable interactions between colloids18,19. However, a common
element in all this work was the fact that the size of the
anisotropic particles involved was irrelevant. Indeed, standard
thermotropic mesogens typically have lengths below 2 nm, and
are therefore negligible in size even in micrometer-sized confining
volumes or compared to the diameter of typical colloidal solutes.
The physics of these systems is therefore fully captured by
continuum theories20, which describe the local anisotropy of the
material by vector or tensor fields that are continuous, except
possibly at isolated points, lines or surfaces where defects are
localized. Arguably, in some cases the nematic coherence
length21, which governs the spatial extent by which boundary
conditions influence the bulk behaviour, can reach dimensions
comparable to the system size. However, it is an open question
what happens when the size of the particles themselves does
become important.

In order to reach this regime, we take a cue from nature, which
provides a host of viral particles and filamentous biopolymers
whose lengths are upward of the micrometer scale. Moreover,
biopolymers in nature are actually often strongly confined.
Cytoskeletal filaments for instance are packed at high density
within thin sheet-like lamellipodia and finger-like filopodia22 and
viral DNA is packed at high density inside tiny virus capsules23.
These strongly confined conditions in which the polymer length
is comparable to the typical dimensions of the confining space
raise the general question how colloidal nematics resolve the
topological and geometric constraints that inevitably arise when
mutual packing and alignment to boundaries compete at the
same length scale.

To address this question in a well-controlled setting, we will
consider model systems composed of rod-like particles, using
both simulations and experiments with fd-virus particles.

Since the interactions between colloidal particles, especially in
physiological salt conditions, are dominated by short-range
repulsions, the interactions between the particles in the simula-
tions are taken to be of the hard body type. Since the seminal
work of Onsager24, it is known that such systems display entropy-
driven liquid crystalline phases. The bulk phase diagram of hard
rods has been studied extensively by computer simulations25.
Several groups have shown that colloidal systems composed of
rod-like virus particles are indeed well described by this model
(for a review see ref. 26). There are few studies that have looked
into the effect of confinement in a single direction27,28, but until
recently studies with full confinement in all dimensions were
scarce29–31. We focus on quasi 2-dimensional (2D), circularly

symmetric confinement geometries, ideally suited for analysis and
visualization purposes, and readily adapted to probe different
confinement topologies. In the following, we first report on the
simulations, followed by the experimental results. Our main result
is that, depending on the geometry and the topology of the
confining volume, and the relative size and packing fraction of the
particles, a wide variety of defect-mediated patterns emerge. For a
circular geometry these patterns are characterized by antipodal
pairs of isolated singularities, which are either located within the
volume or (virtually) outside it. For the topologically distinct
annular geometry, n-fold symmetric domain structures appear,
controlled by the size of the inner hole.

Results
Circular geometry. As a canonical baseline model, we first con-
sider a simple circular geometry. For details on the simulation
technique and the simulation geometry we refer to the Methods
section. As shown in Fig. 1, we observe a variety of packing
structures that are all controlled by two in-plane singularities of
strength þ 1/2. These singularities are in fact the end-points of
line defects that span the system from top to bottom, but due to
dominant planarization effect of the top and bottom boundaries,
the system is effectively homogeneous in this direction and out of
plane orientations are negligible. We therefore proceed to char-
acterize them by their in-plane nature. A 2D disk has Euler
characteristic w¼ 1 (ref. 32), which dictates that any orientational
pattern aligned to the perimeter should carry a topological charge
of þ 1 (ref. 33). Indeed, a 2D version of continuum theory
applied to the case with strong parallel boundary anchoring
predicts a bipolar pattern consisting of two diametrically opposite
þ 1/2 singularities located at the perimeter of the disc as the
stable state (Supplementary Note 1; Supplementary Fig. 1).
Although these simulations employ the 2D tensor order para-
meter34, due to the observed strong degree of planarization the
3D order parameter we measure in our simulations effectively
coincides with the 2D one (Supplementary Note 2). For a full
discussion on our characterization of the singularities please refer
to Supplementary Note 3.

Depending on the aspect ratio and the packing fraction of the
particles, we find that the singularities are located inside the disc
(Bi), at its boundary (Bb) or are present as virtual singularities
located either a finite distance from the centre (Bo), but still causing
a noticeable distortion of the alignment pattern on the inside or
effectively infinitely far away (BN), yielding a nearly homogeneous
nematic state. The virtually bipolar patterns (Bo and BN) have been
predicted to occur under weak anchoring conditions in elongated
droplet shapes35,36, and reflect the fact that the entropy-driven
alignment of the particles to the in-plane boundaries can at higher
densities be overridden by the bulk alignment. The Bi pattern
observed for shorter rods and at relatively low density in which a
finite boundary layer of wall-aligned particles encloses the two
singularities, however, was hitherto not described, and provides a
clear signal that local packing effects can cause deviations from the
continuum picture. An overview of the patterns found in the
circular geometry can be found in Supplementary Table 1. Our
results demonstrate that the patterns observed in strictly 2D
systems37–39 are robust against the presence of a finite system size
in the transverse direction30.

Annular geometry. What happens when we change the topology
to that of a 2D annulus? This shape has Euler characteristic w¼ 0,
which suggests that singularities can be avoided. Indeed, the
continuum theory of 2D liquid crystals with strong parallel
anchoring predicts that in this case a defect-free, tangentially
ordered nematic structure is stable (Supplementary Note 1;
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Supplementary Fig. 1). To test whether this prediction still holds
for the finite particle size, we open a hole with a varying inner
radius Rinner in the centre of our simulation volume. Strikingly,
we see that with increasing Rinner, different n-fold symmetric
domain structures develop (Fig. 2), which we denote by the
dihedral group symbol Dn (ref. 40). For the case D3, we find
domains with a boundary that is demarcated by aþ 1/2
singularity located at the outer rim and a � 1/2 singularity at
the inner rim. Inspection of snapshots of the simulations reveals
that in this case, a particle can fit radially inside the container and
form a bridge between the two singularities. For the patterns with
nZ4 this is no longer possible, and the boundary between the
domains is an extended disclination wall. Interestingly, a recent

simulation study reported the D3 pattern as a metastable state for
the 2D circular system41, possibly an effect of specific initial
conditions. In our simulations, however, we have never observed
this pattern in the circular system and we argue that it is only
stable in the annular system. An overview of the patterns found in
the annular geometry can be found in Supplementary Table 2.

The discrete nature of the domain structure appears to be
dominated by the possible packing arrangements of the rods
around a central hole of a given size. Considering the inner hole
radii that would perfectly inscribe a regular n-gon of particles, one
obtains the relation RinnerðnÞ ¼

1
2 tanðp=nÞ L.

Pooling all our simulation data on the observed patterns in
Fig. 3, shows that indeed this geometrical criterion almost exactly
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Figure 1 | Patterns of rod-like particles in circular confinement. Overview of packing structures of rod-like particles confined in shallow chambers with a

circular geometry. Top row: schematic showing classification by the location of the disclination points: (a) type Bi, (b) type Bb, (c) type Bo, (d) type BN.

Second row: snapshots showing particle positions and their orientations with respect to the vertical (mod p) (see colour bar on the right). Third row:

orientation patterns averaged over 4103 configurations. Fourth row: value of the scalar order parameter SA[0,1], scale bar on the right. For a discussion of

the error estimate in this quantity see the Supplementary Note 8 and Supplementary Fig. 10 Note the characteristic dips at the location of the defects. Fifth

row: normalized angular deficit parameter, which peaks at the centre of the defects. Simulation parameters: (e,i,m,q) L/D¼ 15 and Z¼0.16;

(f,j,n,r) L/D¼ 15 and Z¼0.20; (g,k,o,s) L/D¼ 20 and Z¼0.20; (h,l,p,t) L/D¼ 25 and Z¼0.20.
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matches the observed boundaries between the different regimes
for H¼D (Supplementary Fig. 2), while the ranges of stability of
D3 and D4 patterns widen significantly for the systems with
H¼ 3D and 6D.

Experiments. The fact that the simulations indicate that the D3

pattern is stable for a wider range of geometries when the height
of the well increases, suggests that this pattern should be obser-
vable even when the extreme transverse confinement conditions
of the simulation are not fully met. We experimentally realized
such a system by confining nematic liquid crystals of bacter-
iophage fd-virus rods42 inside shallow, annulus-shaped
microchambers. The fd-virus particles are the convenient model
liquid-crystal system, since they are monodisperse in length, their
interactions are hard-core like when surface charges are screened
and their bulk phase behaviour is well-known43. fd-rods have a
length of L¼ 0.88 mm and diameter of D¼ 6.6 nm, and we can
observe individual particles and their anisotropic (mostly axial)

diffusion in the nematic background by fluorescence
microscopy44. We use photolithography to produce non-
adhesive annulus-shaped microchambers whose outer radius
Router ranges from 5 to 50mm, yielding confinement in the
range k¼ 10� 1–10� 2, and whose inner hole radius Rinner ranges
from 0 to 0.7 times the outer radius Router. The chambers have a
height in the range of H¼ 1–3 mm, which is the minimal
thickness that was experimentally attainable. We acquired
confocal fluorescence time-lapse image series of chambers
containing fd-rods with a small fraction of fluorescently labelled
rods serving as tracers. To compute director fields, we extract the
time-averaged orientation of the nematic director for each image
pixel by the automated image analysis (Supplementary Note 4;
Supplementary Figs 3 and 4).

We observe mainly three distinct patterns: a twofold symmetric
structure (D2) showing two opposite þ 1/2 singularities (Fig. 4a),
a threefold symmetric pattern (D3) showing three þ 1/2
singularities (Fig. 4b) and a pattern with infinite-fold rotational
symmetry (DN) that lacks singularities (Fig. 4c). The occurrence
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Figure 2 | Patterns of rod-like particles in annular confinement. Overview of packing structures of rod-like particles confined in annulus-shaped

chambers, showing threefold (left column), fourfold (middle column) and fivefold (right column) symmetry. Top row: snapshots of simulations. Second row:

particle orientations averaged over averaged over 4103 configurations, labelled by colour bar on the right. Third row: scalar order parameter SA[0,1].

Fourth row: normalized angular deficit parameter. Simulation parameters for each column (from left to right): (a,d,g,j) H¼6, L/D¼ 15, Z¼0.20 and

Rinner¼ 7.5; (b,e,h,k) H¼ 6, L/D¼ 25, Z¼0.20 and Rinner¼ 15; (c,f,i,l) H¼ 3, L/D¼ 25, Z¼0.20 and Rinner¼ 15. For error calculations see Supplementary

Note 8 and Supplementary Fig. 10.
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of these patterns strongly depends on the shape and size of the
confining chambers, as shown in Fig. 4d. Strikingly, the D2

pattern, which corresponds to the Bb pattern predicted by
simulations of rods in a disk-like geometry (Fig. 1b) and in an
annular geometry with small inner hole radius (Fig. 3), persists
over a wide range of inner hole radii (Fig. 4d). The D3 pattern
only occurs for chambers with a small but finite hole size in the
range of 1–3 mm, corresponding to B1–3 fd-rod lengths and
Rinner/Router¼ 0.2 (Fig. 4d, red triangles). This pattern has three
prominently visible and evenly spaced þ 1/2 singularities. Finally,
the pattern with infinite-fold symmetry dominates for systems
with a large inner hole (Rinner/Router¼ 0.7, Fig. 4d, blue circles).
The experiments are consistent with the simulation results,
notably the extended stability range of the D3 pattern in chambers
of finite height. Unfortunately, we did not observe the DnZ4

patterns, but note that the DN pattern is the logical limit of the
patterns with increasing finite n-fold symmetry predicted for
increasing inner hole radius. Remarkably, in spite of the fact that
the experimentally realized heights in principle allow the fd-
particles to fully rotate out of plane, the observed patterns are
completely planar. This suggests that the entropically favourable
planar degenerate boundary conditions imposed by the large top
and bottom surfaces in conjunction with the long-ranged
orientational order in the nematic state are sufficient to impose
quasi-2D behaviour for a large range of box geometries. A full
overview of the patterns found in the experiments is given in
Supplementary Note 5 and Supplementary Figs 5 and 6.

Discussion
Our results show that strongly confined colloidal liquid crystals
have a rich phase behaviour mediated by defect structures. These
intricate coupled spatial and orientational patterns arise from the
complex interplay between particle size and shape, and the
geometry and topology of the confinement volume. The
description of these effects is beyond the reach of standard
continuum theories, which neglect finite particle size effects and
require singularities to be incorporated ‘by hand’. This raises the
challenge of developing a tractable theoretical framework in
which the ratio of the particle dimension to the characteristic
length scale(s) is a salient parameter. However, our results show
that simulations, albeit on systems that are as yet significantly

smaller than the experimentally realized ones (for a critical
comparison between the two please see Supplementary Note 6
and Supplementary Fig. 7), already provide predictive insights.
Finally, our findings open a novel avenue to create liquid-crystal
systems with designed orientational microdomain structures45,
with the potential for creating controlled optical properties.

Methods
Simulations. We use the standard Metropolis Monte Carlo technique to simulate
hard particles, sampling both rotations and translations of the particles, and
accepting these if no overlaps with other particles or with the confining walls are
created46. As model particles, we consider hard, rigid spherocylindrical rods, of
length L and diameter D. These particles are confined in shallow, circular
microchambers with radius Router. Two parallel plates with spacing H smaller than
the particle length formed the top and bottom of our simulation volumes, allowing
us to focus on in-plane pattern formation.

The excluded volume interactions of the rods with the walls favour planar
degenerate boundary conditions21 with particles aligned parallel to the boundaries.
Note, however, that, because of the finite size of the particles and the finite radius of
curvature of the side walls, the centre of mass of the particles is constrained to keep
a distance 4D from the side walls. The alignment with the lateral boundaries is
therefore at best approximate. We considered both the strictly 2D case in which the
height is equal to the diameter of the rods (H¼D), as well as more realistic quasi-
2D situations, H¼ 3D and 6D. We want to study the regime in which the
interparticle alignment competes with the boundary alignment. Since the boundary
anchoring length for spherocylindrical rods is of the order of the particle
length,27,47 we need to choose Router to be comparable to L. A convenient measure
for the degree of lateral confinement is the ratio k¼ L/(2Router), which is unity
when the rods can just fit in the volume and zero for the unconfined case. In order
to obtain a reasonable compromise between computational tractability and realism
we used an outer radius Router¼ 40D and particle aspect ratios in the range
L/D¼ 15–25, yielding k¼ 0.2–0.3. The number of particles was chosen to obtain
packing fractions at which the corresponding unconfined system is in a nematic
state25. For the circular geometry this implies that we have between 300–500
particles for H¼ 6D. To systematically characterize any patterns observed, we
measured a spatially resolved version of the standard second-rank tensorial order
parameter. Local order parameter tensors have already been employed previously
in the study of inhomogeneous liquid crystals, both in lattice models48 and even
earlier in off-lattice models49. In these studies, the spatial variations were on a scale
small with respect to the system size, but typically larger than the size of the unit
cell (for the lattice models) or the particle size (in the off-lattice case). Here,
however, we are using an order parameter, which is defined at a length scale
smaller than that of the particles, and which also varies on this length scale. Such an
order parameter has in fact already been used extensively in the study of liquid
crystalline polymers (see for example, ref. 50), and has recently been shown to
consistently carry over to rigid particles51,52. For more information on the order
parameter, please refer to Supplementary Note 2 and Supplementary Fig. 8. The
order parameter allows us to extract the average local degree of order, the local
preferred axis of ordering, and the local angular deficit, which is a sensitive measure
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for the presence of orientational singularities (Supplementary Note 7). It should be
noted that these singularities are in the orientation field, and are not accompanied
by any significant change in the local packing fraction of the rods (Supplementary
Fig. 9). To monitor the equilibration of our system, we use the largest positive
eigenvalue of the global tensor order parameter as a scalar measure of ordering. To
analyze the statistical reliability of our results we have performed an error analysis
using subsamples, which is described in Supplementary Note 8 and Supplementary
Fig. 10.

Bacteriophage fd-virus preparation. fd-virus rods were grown using a standard
protocol26 and stored in fd-buffer solution (20mM tris, pH 8.15, 100mM sodium
chloride, 15% ethanol). Assay suspensions were prepared at concentrations of
24mgml� 1, slightly above the bulk isotropic–nematic biphasic region, which
occurs at B20mgml� 1, in agreement with the Onsager theory53. Bulk
suspensions were biphasic, as evidenced by visual inspection through crossed

polarizers. We chose the lowest possible nematic concentration, in order to
minimize the energy cost to re-arrange from one director field to another and thus
reduce the probability of getting stuck in high-energy metastable states.
Fluorescently labelled rods were prepared by incubation with Alexa-488
succinimidyl ester (Invitrogen) following a published procedure47. A small fraction
of labelled rods (2–4% v/v) was mixed with unlabelled rods in order to make
individual-labelled rods distinguishable by fluorescence microscopy.

Microchamber preparation. Microchambers were assembled using a standard
photolithographic technique described elsewhere30. Chamber dimensions were set
by a mask design with circular and annular geometries with outer radii of 5, 10, 15,
25, 35 and 50mm. For each outer radius, geometries with inner radii of 0, 0.1, 0.2,
0.3, 0.5 and 0.7 times the outer radius were made, resulting in a total of 36 different
geometries. Chambers were sealed with polydimethylsiloxane-coated microscope
slides and soaked overnight in fd-buffer containing 0.1 wt% of the amphiphilic
block copolymer Pluronic F-127 (Sigma-Aldrich). This treatment effectively
blocked nonspecific adsorption of fd-rods, as confirmed by time-lapse imaging of
rod diffusion. Saturation of the PDMS with buffer prevented drying of the sample
for at least 24 h.

Confinement assay. A drop of fd-virus suspensions was placed on a glass-pho-
toresist substrate and pressed against rubber-coated glass to form microchambers.
We hermetically sealed the glass edges with VALAP and let samples equilibrate for
at least 30min before visualizing by fluorescence microscopy. We only consider
well-sealed chambers for quantification. Approximately 40% of all chambers are
well-sealed. Chambers that were not well-sealed were evident by fluorescently
labelled rods escaping from the chamber. The rods rapidly organized in steady-
state nematic patterns within 30min after filling the chambers. When we filled the
chambers with the isotropic phase below the biphasic region, a nematic was not
formed and the samples remained isotropic. This observation implies that the
filling (and confinement) were not sufficient to induce a nematic.

Fluorescence microscopy. Microchambers were visualized using two microscope
setups: (1) a spinning disk confocal scanner (CSU 22, Yokogawa) on an inverted
microscope (DMIRB, Leica) with a cooled, electron-multiplying charged-coupled
device (C9100, Hamamatsu) and (2) a Nikon C1 confocal point scanner on an
inverted microscope (Ti, Nikon) with a photomultiplier tube detector (A1, Nikon).
Labelled rods were excited with 488 nm laser light (Coherent). A series of images
were recorded over a long enough time interval such that viruses diffused across
the entire chamber. The average diffusion constant of virus rods in the nematic
phase is 1 mm2 s� 1 along the nematic director and 0.1 mm2 s� 1 perpendicular
to the nematic director44. These diffusion constants result in diffusion timescales
of tens of seconds for diffusion over a distance of one particle length and minutes
for diffusing over interparticle distances between fluorescently labelled rods
(B a few mm). For spinning disk data, typically ten movies of 200 frames each were
acquired at a fast imaging rate (0.1 frames per second), which were separated by
2min to allow rods to diffuse completely across the chamber. For point-scanning
confocal data, 15–30 frames were acquired at a slower rate (1 frame perB1–2min)
over several fields of view which were automatically acquired and stitched (NIS
Elements, Nikon). A customized image analysis technique was developed to
determine the average nematic director orientation oy4 given time-averaged
orientations y of labelled fd-rods across all images acquired (Supplementary Note 4;
Supplementary Figs 3 and 4).

Identification of nematic patterns. Rods formed a variety of liquid-crystal pat-
terns. The pattern type was determined by visual inspection of the nematic director
fields of all well-filled chambers on the chip. Supplementary Figs 11 and 12
summarize the pattern frequency and probability, respectively, as a function of
Router and Rinner/Router. We define the probability that a pattern P occurs in a given
chamber geometry G as the number of observed instances of P divided by the total
number of well-sealed chambers with geometry G. A total of 243 chambers were
analyzed: 80, 27, 26, 36, 43 and 31 chambers for Rinner/Router¼ 0, 0.1, 0.2, 0.3, 0.5
and 0.7, respectively; 77, 75, 55, 25, 9 and 2 chambers for Router/mm¼ 5, 10, 15, 25,
35 and 50, respectively; 113, 5, 23, 21, 33, 32 and 16 chambers for patterns D2, D3,
DN, N, A1, A2, and Aþ , respectively.

Data availability. The data that support the findings of this study, as well as the
computer codes used in the simulations, are available from the corresponding
author upon request.
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