000825182 001__ 825182
000825182 005__ 20210129225232.0
000825182 020__ $$a978-0-7354-1392-4
000825182 0247_ $$2doi$$a10.1063/1.4952328
000825182 0247_ $$2WOS$$aWOS:000380803300545
000825182 037__ $$aFZJ-2016-07655
000825182 041__ $$aEnglish
000825182 1001_ $$0P:(DE-Juel1)132274$$aSutmann, Godehard$$b0$$eCorresponding author$$ufzj
000825182 1112_ $$aInternational Conference of Numerical Analysis and Applied Mathematics 2015$$cRhodes$$d2015-09-22 - 2015-09-29$$gICNAAM 2015$$wGreece
000825182 245__ $$aGreen’s function enriched Poisson solver for electrostatics in many-particle systems
000825182 260__ $$aMelville$$bAmerican Institute of Physics$$c2016
000825182 300__ $$a480092
000825182 3367_ $$2ORCID$$aCONFERENCE_PAPER
000825182 3367_ $$033$$2EndNote$$aConference Paper
000825182 3367_ $$2BibTeX$$aINPROCEEDINGS
000825182 3367_ $$2DRIVER$$aconferenceObject
000825182 3367_ $$2DataCite$$aOutput Types/Conference Paper
000825182 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1482155136_5868
000825182 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000825182 4900_ $$aAIP Conference Proceedings$$v1738
000825182 500__ $$aAll papers have been peer reviewed; English
000825182 520__ $$aA highly accurate method is presented for the construction of the charge density for the solution of the Poissonequation in particle simulations. The method is based on an operator adjusted source term which can be shown to produceexact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating thediscretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green’sfunction of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that theexact calculation of the potential is possible independent of the order of the finite difference scheme but the computationalefficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of thecharge support.
000825182 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000825182 588__ $$aDataset connected to CrossRef Conference
000825182 650_7 $$0(DE-588)4042805-9$$2gnd$$aNumerische Mathematik
000825182 650_7 $$0(DE-588)4142443-8$$2gnd$$aAngewandte Mathematik
000825182 773__ $$a10.1063/1.4952328
000825182 909CO $$ooai:juser.fz-juelich.de:825182$$pVDB
000825182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b0$$kFZJ
000825182 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000825182 9141_ $$y2016
000825182 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825182 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000825182 980__ $$acontrib
000825182 980__ $$aVDB
000825182 980__ $$aUNRESTRICTED
000825182 980__ $$acontb
000825182 980__ $$aI:(DE-Juel1)JSC-20090406