001     825182
005     20210129225232.0
020 _ _ |a 978-0-7354-1392-4
024 7 _ |a 10.1063/1.4952328
|2 doi
024 7 _ |a WOS:000380803300545
|2 WOS
037 _ _ |a FZJ-2016-07655
041 _ _ |a English
100 1 _ |a Sutmann, Godehard
|0 P:(DE-Juel1)132274
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Conference of Numerical Analysis and Applied Mathematics 2015
|g ICNAAM 2015
|c Rhodes
|d 2015-09-22 - 2015-09-29
|w Greece
245 _ _ |a Green’s function enriched Poisson solver for electrostatics in many-particle systems
260 _ _ |a Melville
|c 2016
|b American Institute of Physics
300 _ _ |a 480092
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1482155136_5868
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a AIP Conference Proceedings
|v 1738
500 _ _ |a All papers have been peer reviewed; English
520 _ _ |a A highly accurate method is presented for the construction of the charge density for the solution of the Poissonequation in particle simulations. The method is based on an operator adjusted source term which can be shown to produceexact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating thediscretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green’sfunction of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that theexact calculation of the potential is possible independent of the order of the finite difference scheme but the computationalefficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of thecharge support.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
650 _ 7 |a Numerische Mathematik
|0 (DE-588)4042805-9
|2 gnd
650 _ 7 |a Angewandte Mathematik
|0 (DE-588)4142443-8
|2 gnd
773 _ _ |a 10.1063/1.4952328
909 C O |o oai:juser.fz-juelich.de:825182
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132274
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21