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Abstract 

Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 

shows after the first 9 h nucleation and growth of spherical CdS nanoparticles with a radius of up 

Towards 48 h the particle shape has changed into spheroidal with short and long axis 

of 2 and 120 2 , respectively. After the nucleation is completed after 24 h, further growth 

in this amorphous environment is governed by oriented particle attachment mechanism as found 

for a liquid medium.  
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1. Introduction 

Small semiconductor nanoparticles or quantum dots (QDs) have an immense potential for 

application in fields like optoelectronics [1-7] and biomedicine [8, 9] due to the nonlinear optical 

properties of these materials [10], the tunable high intensity photoluminescence [11], and a 

narrow emission line width together with a wide absorption range [12]. When the particles are 

small their stability in general is fragile due to high excess energy of the surface. This latter fact 

also results in rapid particle growth in supersaturated conditions by atomic attachment. When 

low supersaturation is reached at later times, growth may occur through particle attachment or 

through Ostwald ripening. Hence attempts have been made to stabilize QDs at a specific size and 

to avoid their agglomeration using polymers or glass matrixes [13-22]. Use of a silicate glass in 

particular as the QDs matrix appears to be particularly attractive since it is based on a cheap 

production technology and it resists to chemical and environmental damage [23-25]. Further, as 



growth is diffusion controlled and only relevant at elevated temperature the size of the QDs can 

be easily controlled through a temperature profile, giving specific properties of the material. 

In this study cadmium sulfide (CdS) nanoparticles were nucleated and grown thermally in a 

silicate glass matrix, and small angle X-ray (SAXS) and neutron (SANS) scattering [26-28] have 

been used to analyze their geometrical properties. 

 

2. Experimental 

2.1 Synthesis  

The synthesis of nanoparticles embedded in a glass matrix explored in the present 

experiment is based on commercial technologies developed for the fabrication of color cut-off 

filters and photochromic glasses [29, 30]. Diffusion controlled growth from a supersaturated 

solution can be described in terms of three distinct precipitation stages, namely nucleation, 

normal growth, and competitive growth under specific conditions [15, 31-34]. First, nuclei are 

formed due to fluctuations in the local concentration of the reactants. Second, these particles 

grow by diffusion of reactants to the surface of the nuclei. In this stage, the number of particles 

remains constant, while their size increases. Third, after the Cd and/or S concentration has 

dropped below a specific level, and larger particles continue to grow while smaller particles 

dissolve. This final stage is also known as the coarsening or ripening stage, also termed Ostwald 

ripening. 

This complex sequence of processes is driven by the phase transition in a supersaturated 

solution [15, 29], and the time constant of particle formation is controlled by the diffusion of 

ions dissolved in the matrix. The material synthesis can be performed in a temperature range 

Tglass < T < Tmelt, where Tglass and Tmelt are the glass transition temperature and the melting 

temperature, respectively [23, 29, 30].  

A glass made from high purity powders with compositions 64 % SiO2, 13 % ZnO, 11 % 

K2O, 9 % Na2O, 3 % B2O3, and 0.9 % CdS was used, where SiO2 serves as glass former, K2O, 

Na2O and B2O3 as flux to reduce the melting temperature, and ZnO as partner for CdS formation.  

In preliminary glass making experiments the amount of S retained in the glass after melting 

was determined. This knowledge was needed to make a glass with a well-defined amount of S, 

and CdS nanoparticles as well. Also it was found that nanoparticles form faster for a melting 

time of the glass of 2.5 h as compared to 4 h. Related, the time needed to color the sample during 

the annealing process increased from 6 to 200 h for the melting time 2.5 and 4 h, respectively, 

indicating a decrease of the content of S and, therefore, the amount of CdS grown for elongated 

melting times.  



Thus the glass batch used for the small angle scattering (SAS) was melted for 2.5 h in a 

recrystallized alumina crucible in an electrically heated shaftfurnace at 1400 After this, the 

glass melt was quenched in air on a hot graphite plate and immediately annealed at 550 

30 min. Subsequently, the samples were slowly cooled to room temperature to remove the 

stresses created by the quenching. By this procedure, a transparent, colorless bulk glass was 

synthesized.  

Samples were then cut with a diamond wheel saw to dimension of 10 10 mm3. 

Subsequent heat treatments initiated the growth of CdS crystals. Optical inspection has shown 

that annealing at 600  for different periods of time is best to produce a yellow color of the 

samples. After 6 h at this temperature the glass shows different tints from green-yellow to 

orange-yellow. Reference glass samples without CdS subjected to the same annealing remained 

colorless. After annealing the thickness of samples was reduced to 150 

and final polishing with diamond suspension to achieve at least 13 % of X-ray transmission at 

1.54 . This thickness meets also the neutron scattering conditions providing for a measured 

transmission of 70 % at 12 .  

 

2.2 Experimental techniques 

The samples were measured with a laboratory SAXS equipment in Juelich, Germany  

(BRUCKER NANOSTAR X-Ray Diffraction System, point  

q-range between 0.005 and 0.3 [1/ ]) and with SANS using KWS-3 beamline at FRM II 

(focusing mirror system, neutron wavelength 12 q-range between 0.0003 and 0.035 [1/ ]) in 

Garching, Germany. The data reduction involved correcting the radial integrated intensity 

profiles for transmission, thickness, detector efficiency and empty beam. The data were fitted 

with the program IRENA (IgorPro) which allows analyzing SAS data by immediate modeling of 

the scattering from several populations selecting forms and structure factors [35]. 

 

3. Results and discussion 

Since the Guinier regime is outside the investigated window the amplitude of background 

scattering from the glass matrix is described by the scattering volume that is derived by the 

scattering intensity using basic SAS formula [35]: 

 

where  is scattering length density,  is contrast, F(q,r) is scattering form factor, V(r) is the 

particle volume, N is the total number of scattering particles, P(r) is the probability of occurrence 

of scatterers of size of r. If the chemical formula indicates that there are k types of atoms, of 



which  are of variety j with scattering length , then the scattering length density  is given 

by [28]: 

 

where  is the mass of the molecule,  is the bulk density, NA is Avogadro 

constant. For X-ray scattering , where  is atomic number,  is Thomson scattering 

length or classical electron radius. The calculated value of contrast between CdS phase and glass 

matrix used in modeling is -12 A-4. 

Difference of curves in Fig. 1b to 1d with respect to an increase of scattering intensity for q 

above 0.02 -1 with respect of annealing time arises from CdS nucleation and growth during the 

annealing. At this range the CdS response was not observed for the as-prepared glass (see Fig.1a) 

indicating an ionic state of Cd and S. All samples show pronounced scattering at q below 

0.02  -1 which we associate with large scale inhomogeneities due to density and concentration 

fluctuations which are common in multicomponent glasses [36-39]. It appears that this 

contribution will be published elsewhere. 

At present, the emphasis is on a description of the formation of CdS nanoparticles. Thus, to 

describe the data we assume a system composed out of the glass matrix and CdS nanoparticles. 
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Fig. 1 Experimental SANS (open symbols) and SAXS (closed symbols) intensities (points with error 

bars) for samples as prepared (a) and annealed for 12 (b), 24 (c) and 48 (d) hours at . Bold grey 

solid lines represent model curves composed out of glass background (1) and CdS particles (2) (see text 

for details).  

 

The scattering signal from these fluctuations is modeled using two particle populations 

represented by a sphere with radius of about 17 000  (population 1) and a spheroid with a short 

and a long radius of about 250 and 17 000 

contributions is shown in Fig.1 as line 1. We note that these values which also vary with 

temperature in a range of 16 000 17 000 and 200 250 may not be related directly to the real 

physical extensions of the glass heterogeneities, but they are used to provide a description of the 

glass background.  

The scattering intensity from the as-quenched Cd and S doped glass only shows the 

scattering from the glass matrix without CdS formation. This implies that the quenching 

procedure is efficient and suppresses the formation of nanoparticles. 

The salient change in the SAS pattern is an increasing amplitude with annealing time for q 

values above 0.01 -1, which reflects directly the formation of CdS particles. In particular, we 



note that the experimental data develop well-defined oscillations at higher q values for annealing 

times of 24 h and for 48 h. 

For the annealing time of 12 h the scattering can be described by a sphere with a radius of 

  However, this approach proofs inadequate for longer annealing times and a description 

with a spheroid with an aspect ratio of 3 is needed. The size of the spheroid is increasing with 

time (see table 1). Further, the amount of precipitated CdS is increasing with time as evident 

from the graphs in Fig.1 and summarized in Table 1. 

 

Table 1 Fitting parameters for the small angle scattering on CdS in silicate glass annealed at 

600  for different periods of time. 

 Distribution 

Type 

Fitting 

Parameters 
12 h 24 h 48 h 

  Shape Sphere Spheroid short/long axis 

Population 

3 
LogNormal 

 34 24/72 40/120 

Standard 

 
4 2 2 

Total Volume 

CdS/glass, 

mm3/cm3 

0.06 0.5 1 

 

Analysis of the size of the CdS nanoparticles suggests that the annealing at 600  during 

the first 12 h period causes the nucleation of spherical CdS nanoparticles with a radius of about 

34 heat treatment of 24 h and beyond leads to a change of the shape of the 

nanoparticle from spherical to spheroidal with an aspect ratio of 3 and reaching after 48 h a short 

and a long axis of 40 and 120  

The volume increase between 12 and 24 h and between 24 and 48 h is about a factor of 8 

and 2, respectively. Analysis of a single nanoparticle volume suspects that annealing from 12 to 

24 h leads only to particle shape changing from sphere to spheroid with aspect ratio of 3 which is 

likely more energy preferable for a hexagonal structure of CdS nanoparticles. A width of 

lognormal distribution narrows substantially indicating the formation of nanoparticles with equal 

size and shape up to 24 h. Further annealing up to 48 h causes an increase of the single particle 

volume by a factor of 5 and an extension of the distribution width. This argues the transition 

from supersaturation to Ostwald ripening regime when CdS available is redistributed with 

negligible total volume changes. According to this mechanism the nanoparticles tend toward an 

isotropic growth forming particles with spherical shapes which are thermodynamically more 

stable because of the minimization of the overall surface energy. However, the experimental 

SAS results show anisotropic nanoparticle growth from sphere to spheroid. The analysis of size 

changes demonstrates that nanoparticles behave like clusters in colloidal solution which coarse 



by attachment instead of a dissolution of smaller particles and ion re-precipitation as for Ostwald 

ripening. Nanoparticles after 24 h of annealing seem to be attached together with some sum 

surface changes due to time and temperature. This can be accounted for by oriented attachment, 

another growth mechanism in nanoscale systems where nanoparticles with common 

crystallographic orientations directly combine together leading the formation of nanoparticles 

with anisotropic shapes [40-44]. In this case the energy minimization can be attained by forming 

anisotropic particles, particularly in cases where growth occurs preferentially in the high energy 

planes [45].  

 

4. Conclusions 

In the present work CdS nanoparticles were grown isothermally in a glass matrix SiO2-

ZnO-K2O-Na2O-B2O3 with an annealing at 600  for different periods of time. The 2.5 h 

melting led to a sulfur content ten times less than initially introduced. Nevertheless this was 

sufficient for CdS nanoparticles to form and to be observed already by the appearance of a 

yellow color. The samples synthesized were studied here in more detail by small angle 

scattering. The combination of SANS and SAXS has shown the formation of CdS nanoparticles 

which size and shape changed with annealing time from spherical into spheroidal with the short 

and long radii up to 40 and 120 

nanoparticles with anisotropic shape of spheroid, exhibiting the particular character of crystal 

growth by the oriented attachments mechanism. In this case low diffusion in viscous matrix was 

overcome by time and high annealing temperature. Additionally it was found that the thermal 

treatment of the samples strongly influences on the nanoparticle size distribution that becomes 

narrower with longer annealing time up to 24 h. All the findings for glass nanotechnology can be 

used for the tuning of optical properties due to quantum size effects. 
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