000825199 001__ 825199
000825199 005__ 20240619091223.0
000825199 0247_ $$2doi$$a10.1134/S0036023616110206
000825199 0247_ $$2ISSN$$a0036-0236
000825199 0247_ $$2ISSN$$a1531-8613
000825199 0247_ $$2WOS$$aWOS:000388704300002
000825199 037__ $$aFZJ-2016-07670
000825199 082__ $$a540
000825199 1001_ $$0P:(DE-HGF)0$$aSimonenko, E. P.$$b0$$eCorresponding author
000825199 245__ $$aHow xerogel carbonization conditions affect the reactivity of highly disperse SiO2–C composites in the sol–gel synthesis of nanocrystalline silicon carbide
000825199 260__ $$aMoscow$$bMAIK Nauka/Interperiodica Publ.$$c2016
000825199 3367_ $$2DRIVER$$aarticle
000825199 3367_ $$2DataCite$$aOutput Types/Journal article
000825199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484060680_19272
000825199 3367_ $$2BibTeX$$aARTICLE
000825199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825199 3367_ $$00$$2EndNote$$aJournal Article
000825199 520__ $$aA transparent silicon polymer gel was prepared by sol–gel technology to serve as the base in the preparation of highly disperse SiO2–C composites at various temperatures (400, 600, 800, and 1000°C) and various exposure times (1, 3, and 6 h) via pyrolysis under a dynamic vacuum (at residual pressures of ~1 × 10–1 to 1 × 10–2 mmHg). These composites were X-ray amorphous; their thermal behavior in flowing air in the range 20–1200°C was studied. The encapsulation of nascent carbon, which kept it from oxidizing in air and reduced the reactivity of the system in SiC synthesis, was enhanced as the carbonization temperature and exposure time increased. How xerogel carbonization conditions affect the micro- and mesostructure of the xerogel was studied by ultra-small-angle neutron scattering (USANS). Both the carbonization temperature and the exposure time were found to considerably influence structure formation in highly disperse SiO2–C composites. Dynamic DSC/DTA/TG experiments in an inert gas flow showed that the increasing xerogel pyrolysis temperatures significantly reduced silicon carbide yields upon subsequent heating of SiO2–C sys- tems to 1500°C, from 35–39 (400°C) to 10–21% (1000°C).
000825199 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000825199 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000825199 588__ $$aDataset connected to CrossRef
000825199 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000825199 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000825199 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000825199 7001_ $$0P:(DE-HGF)0$$aSimonenko, N. P.$$b1
000825199 7001_ $$0P:(DE-HGF)0$$aKopitsa, G. P.$$b2
000825199 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b3
000825199 7001_ $$0P:(DE-HGF)0$$aSevastyanov, V. G.$$b4
000825199 7001_ $$0P:(DE-HGF)0$$aKuznetsov, N. T.$$b5
000825199 773__ $$0PERI:(DE-600)2223897-9$$a10.1134/S0036023616110206$$gVol. 61, no. 11, p. 1347 - 1360$$n11$$p1347 - 1360$$tRussian journal of inorganic chemistry$$v61$$x1531-8613$$y2016
000825199 8564_ $$uhttp://link.springer.com/article/10.1134/S0036023616110206
000825199 8564_ $$uhttps://juser.fz-juelich.de/record/825199/files/paprer.pdf$$yRestricted
000825199 8564_ $$uhttps://juser.fz-juelich.de/record/825199/files/paprer.gif?subformat=icon$$xicon$$yRestricted
000825199 8564_ $$uhttps://juser.fz-juelich.de/record/825199/files/paprer.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825199 8564_ $$uhttps://juser.fz-juelich.de/record/825199/files/paprer.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825199 8564_ $$uhttps://juser.fz-juelich.de/record/825199/files/paprer.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825199 8564_ $$uhttps://juser.fz-juelich.de/record/825199/files/paprer.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825199 909CO $$ooai:juser.fz-juelich.de:825199$$pVDB$$pVDB:MLZ
000825199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b3$$kFZJ
000825199 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000825199 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000825199 9141_ $$y2016
000825199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRUSS J INORG CHEM+ : 2015
000825199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825199 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825199 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825199 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825199 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825199 920__ $$lyes
000825199 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000825199 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000825199 980__ $$ajournal
000825199 980__ $$aVDB
000825199 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000825199 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000825199 980__ $$aUNRESTRICTED