000825204 001__ 825204
000825204 005__ 20210129225237.0
000825204 0247_ $$2doi$$a10.1021/acsmacrolett.6b00824
000825204 0247_ $$2WOS$$aWOS:000390621100011
000825204 037__ $$aFZJ-2016-07675
000825204 082__ $$a540
000825204 1001_ $$0P:(DE-Juel1)141611$$aZinn, Thomas$$b0
000825204 245__ $$aTelechelic Polymer Hydrogels: Relation between the Microscopic Dynamics and Macroscopic Viscoelastic Response
000825204 260__ $$aWashington, DC$$bACS$$c2016
000825204 3367_ $$2DRIVER$$aarticle
000825204 3367_ $$2DataCite$$aOutput Types/Journal article
000825204 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484765076_22337
000825204 3367_ $$2BibTeX$$aARTICLE
000825204 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825204 3367_ $$00$$2EndNote$$aJournal Article
000825204 520__ $$aTelechelic polymers, that is, hydrophilic polymers with hydrophobic end-groups, spontaneously form hydrogels consisting of interconnected micelles. Here we investigate the relation between the microscopic dynamics determining the connectivity, that is, the lifetime of the physical bonds and the resulting rheological properties. This is achieved by quantitatively relating the chain exchange kinetics measured by time-resolved small-angle neutron scattering (TR-SANS) and the mechanical response obtained from linear oscillatory shear measurements. The results show that the characteristic relaxation time obtained from rheology coincides exactly with TR-SANS at intermediate concentrations. The activation energy, Ea, is concentration-independent and remain exactly the same as for TR-SANS. Upon crossing the melting point, a discrete change in activation energy is observed showing the contribution from the enthalpy of fusion to the release/debridging process. The results clearly show that the mechanical response and connectivity indeed are controlled by molecular exchange processes. The relaxation time at the lowest concentration is found to be faster in rheology as compared to TR-SANS, which can be quantitatively attributed to entropic forces arising from conformational deformation of bridging chains.
000825204 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000825204 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000825204 588__ $$aDataset connected to CrossRef
000825204 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000825204 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000825204 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000825204 7001_ $$0P:(DE-Juel1)131036$$aWillner, Lutz$$b1$$ufzj
000825204 7001_ $$0P:(DE-HGF)0$$aLund, Reidar$$b2$$eCorresponding author
000825204 773__ $$0PERI:(DE-600)2644375-2$$a10.1021/acsmacrolett.6b00824$$gp. 1353 - 1356$$n12$$p1353 - 1356$$tACS Macro Letters$$v5$$x2161-1653$$y2016
000825204 8564_ $$uhttps://juser.fz-juelich.de/record/825204/files/acsmacrolett.6b00824.pdf$$yRestricted
000825204 8564_ $$uhttps://juser.fz-juelich.de/record/825204/files/acsmacrolett.6b00824.gif?subformat=icon$$xicon$$yRestricted
000825204 8564_ $$uhttps://juser.fz-juelich.de/record/825204/files/acsmacrolett.6b00824.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825204 8564_ $$uhttps://juser.fz-juelich.de/record/825204/files/acsmacrolett.6b00824.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825204 8564_ $$uhttps://juser.fz-juelich.de/record/825204/files/acsmacrolett.6b00824.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825204 8564_ $$uhttps://juser.fz-juelich.de/record/825204/files/acsmacrolett.6b00824.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825204 909CO $$ooai:juser.fz-juelich.de:825204$$pVDB$$pVDB:MLZ
000825204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131036$$aForschungszentrum Jülich$$b1$$kFZJ
000825204 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000825204 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000825204 9141_ $$y2016
000825204 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825204 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MACRO LETT : 2015
000825204 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS MACRO LETT : 2015
000825204 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825204 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825204 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825204 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825204 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825204 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825204 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825204 920__ $$lyes
000825204 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000825204 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000825204 980__ $$ajournal
000825204 980__ $$aVDB
000825204 980__ $$aUNRESTRICTED
000825204 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000825204 980__ $$aI:(DE-Juel1)JCNS-1-20110106