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Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in
understanding the propagation of cosmic rays. The precise measurement of the B=C ratio from 1.9 GV to
2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years
of operation, is presented. The detailed variation with rigidity of the B=C spectral index is reported for the
first time. The B=C ratio does not show any significant structures in contrast to many cosmic ray models
that require such structures at high rigidities. Remarkably, above 65 GV, the B=C ratio is well described by
a single power law RΔ with index Δ ¼ −0.333� 0.014ðfitÞ � 0.005ðsystÞ, in good agreement with the
Kolmogorov theory of turbulence which predicts Δ ¼ −1=3 asymptotically.

DOI: 10.1103/PhysRevLett.117.231102

Carbon nuclei in cosmic rays are thought to be mainly
produced and accelerated in astrophysical sources, while
boron nuclei are entirely produced by the collision of
heavier nuclei, such as carbon and oxygen, with nuclei
of the interstellar matter. Therefore, the boron to carbon

flux ratio (B=C) directly measures the average amount of
interstellar material traversed by cosmic rays [1].
In cosmic ray propagation models, where cosmic

rays are described as a relativistic gas scattering on a
magnetized plasma [1], the B=C ratio is used to constrain
the spatial diffusion coefficient D, as the B=C ratio is
proportional to 1=D at high rigidities R. The diffusion
coefficient dependence on rigidity is D ∝ R−δ, where
δ is predicted to be δ ¼ −1=3 with the Kolmogorov
theory of interstellar turbulence [2], or δ ¼ −1=2
using the Kraichnan theory [3]. The measured B=C spectral
index Δ, obtained from a fit at high rigidities of the
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(B=C) ∝ RΔ, approaches the diffusion spectral index δ
asymptotically (Δ ¼ δ).
Precise measurements of proton and helium fluxes by

Alpha Magnetic Spectrometer (AMS) [4,5] have led to the
development of models predicting a deviation from a single
power law of the B=C ratio spectrum at high rigidity [6].
Independently, a deviation from single power law of the
B=C ratio at high rigidities is necessary in models [7–9] that
explain the AMS results on positron fraction [10] and
antiprotons [11].
Because of the importance of the B=C ratio to the

understanding of cosmic rays, over the last 30 years there
have been many measurements [12–21]. Typically, these
measurements have errors larger than 15% at 100 GV.
In this Letter we report the precise measurement of the

B=C ratio in cosmic rays in the rigidity range from 1.9 GV
to 2.6 TV based on data collected by AMS during the first
5 years (May 19, 2011 to May 26, 2016) of operation
onboard the International Space Station (ISS). In this
measurement the total error is ∼3% at 100 GV.
Detector.—The layout and description of the AMS

detector are presented in Ref. [22]. The key elements used
in this measurement are the permanent magnet [23], the
silicon tracker, four planes of time of flight (TOF) scin-
tillation counters, and an array of 16 anticoincidence
counters. AMS also contains a transition radiation detector
(TRD), a ring imaging Čerenkov detector (RICH), and an
electromagnetic calorimeter (ECAL).
The tracker [24] has nine layers, the first (L1) at the

top of the detector, the second (L2) above the magnet, six
(L3 to L8) within the bore of the magnet, and the last (L9)
above the ECAL. L2 to L8 constitute the inner tracker.
Together, the tracker and the magnet measure the

rigidity R of charged cosmic rays. The spatial resolution
in each tracker layer is 8 μm on average in the bending
direction for boron and 10 μm for carbon. The resulting
maximum detectable rigidities (MDRs) are 3.0 TV for
boron and 2.6 TV for carbon over the 3 m lever arm from
L1 to L9. Each layer of the tracker provides also an
independent measurement of the charge Z with a reso-
lution of ΔZ=Z ¼ 5% for both boron and carbon. Overall
the inner tracker has a resolution of ΔZ=Z ¼ 2% for boron
and carbon.
Two of the TOF planes [25] are located above the

magnet (upper TOF) and the other two planes are located
below the magnet (lower TOF). The overall velocity
(β¼v=c) resolution has been measured to be Δβ=β2¼0.01
for boron and carbon nuclei. This discriminates between
upward- and downward-going particles. The pulse
heights of the two upper planes are combined to provide
an independent measurement of the charge with an
accuracy ΔZ=Z ¼ 3% for both boron and carbon. The
pulse heights from the two lower planes are combined to
provide another independent charge measurement with the
same accuracy.

Boron and carbon nuclei traversing AMS were triggered
as described in detail in Ref. [5]. The trigger efficiencies for
both nuclei were measured to be > 98 % over the entire
rigidity range.
Monte Carlo (MC) simulated events were produced

using a dedicated program developed by the collaboration
based on the GEANT-4.10.1 package [26]. The program
simulates electromagnetic and hadronic interactions of
particles in the material of AMS and generates detector
responses. The Glauber-Gribov model was used for the
description of the inelastic cross sections. The INCL++
package [27] was used to model nucleus-nucleus inelastic
interactions below 5 GeV=n and the DPMJET-II.5 package
[28] was used at higher energies. The nucleus-nucleus
hadronic elastic and quasielastic scatterings were treated
using the model developed for helium nuclei [5] and
validated by detailed comparison between data and
simulation.
Event selection.—In the first 5 years AMS has collected

8.5 × 1010 cosmic ray events. The collection time used in
this analysis includes only those seconds during which the
detector was in normal operating conditions and, in
addition, AMS was pointing within 40° of the local zenith
and the ISS was outside of the South Atlantic Anomaly.
Because of the influence of the geomagnetic field, this
collection time for galactic cosmic rays increases with
rigidity becoming constant at 1.23 × 108 sec above 30 GV.
Events are required to be downward going and to have a

reconstructed track in the inner tracker and passing through
L1. In the highest rigidity region, R ≥ 0.88 TV, the track is
also required to pass through L9. Track fitting quality
criteria such as a χ2=d:o:f: < 10 in the bending coordinate
are applied, similar to Refs. [4,5].
The measured rigidity is required to be greater than a

factor of 1.2 times the maximum geomagnetic cutoff within
the AMS field of view. The cutoff was calculated by
backtracing [29] particles from the top of AMS out to 50
Earth’s radii using the most recent IGRF [30] geomag-
netic model.
Charge measurements on tracker L1, inner tracker, upper

TOF, lower TOF, and, for R > 0.88 TV, tracker L9 are
required to be compatible with charge Z ¼ 5 for boron, and
Z ¼ 6 for carbon, as shown in Fig. 1 of the Supplemental
Material [31] for the inner tracker. This selection yields
purities of 90% to 95% depending on rigidity for boron,
and 99% for carbon.
The residual background to boron and carbon events

resulting from interactions of heavy nuclei such as carbon,
nitrogen, and oxygen in the material between L1 and L2
(TRD and upper TOF) is evaluated by fitting the charge
distribution of tracker L1with charge distribution templates
of B, C, N, and O as shown in Fig. 2 of the Supplemental
Material [31]. The charge distribution templates are
obtained from a selection of noninteracting samples on
L2 by the use of the charge measurement with L1
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and L3–L8. This residual background is < 3% for the
boron sample and < 0.5% for carbon.
The background from carbon, nitrogen, and oxygen

interactions on materials above L1 (thin support structures
made by carbon fiber and aluminum honeycomb) has been
estimated from simulation, using MC samples generated
according to AMS flux measurements [32]. The simulation
of nuclear interactions has been validated using data as
shown in Fig. 3 of the Supplemental Material [31]. The
background from interactions above L1 in the boron
sample is 2% at 2 GV and increases up to 8% at 2.6
TV, while for the carbon sample it is< 0.5% over the entire
rigidity range. The total correction to the B=C ratio from
background subtraction is −2% at 2 GV, −3% at 20 GV,
−7% at 200 GV, and −10% at 2 TV.
After background subtraction the sample contains

2.3 × 106 boron and 8.3 × 106 carbon nuclei.
Data analysis.—The isotropic flux ΦZ

i for nuclei of
charge Z in the ith rigidity bin ðRi; Ri þ ΔRiÞ is given by

ΦZ
i ¼ NZ

i

AZ
i ϵ

Z
i TiΔRi

; ð1Þ

where NZ
i is the number of events of charge Z corrected

for bin-to-bin migrations, AZ
i is the effective acceptance, ϵZi

is the trigger efficiency, and Ti is the collection time.
The B=C ratio in each rigidity bin is then given by

�
B
C

�
i
¼ ΦB

i

ΦC
i
¼ NB

i

NC
i

�
AB
i

AC
i

ϵBi
ϵCi

�−1
: ð2Þ

In this Letter the B=C ratio was measured in 67 bins from
1.9 GV to 2.6 TV with bin widths chosen according to the
rigidity resolution.
The bin-to-bin migration of events was corrected

using the unfolding procedure described in Ref. [4]

independently for the boron and the carbon samples.
This results in a correction on the B=C ratio of −2.4%
at 2 GV, −0.5% at 20 GV, −5% at 200 GV, and −13%
at 2 TV.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the two back-
ground estimations discussed above, in the trigger effi-
ciency, in the acceptance calculation, in the rigidity
resolution function, and in the absolute rigidity scale.
The systematic error on the B=C ratio associated with

background subtraction is dominated by the uncertainty of
∼10% in the boron sample background estimation for
interactions above L1, see, for example, Fig. 3 of the
Supplemental Material [31]. The total background sub-
traction error on the B=C ratio is < 1% over the entire
rigidity range.
The systematic error on the B=C ratio associated with the

trigger efficiency is < 0.5% over the entire rigidity range.

Rigidity [GV]
10 210 310

Δ

0.6−

0.4−

0.2−

0

0.2

FIG. 2. The B=C spectral index Δ as a function of rigidity.
The dashed red line shows the single power law fit result to the
B=C ratio above 65 GV; see Fig. 1.

 [GeV/n]KE
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Webber et al.
CRN/Spacelab2
AMS01
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CREAM-I
TRACER
PAMELA
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FIG. 3. The boron to carbon ratio as a function of kinetic energy
per nucleon EK compared with measurements since the year 1980
[12–21]. The dashed line is the B=C ratio required for the model
of Ref. [7].

Rigidity [GV]
10 210 310

B
/C

0.03

0.04
0.05
0.06

0.1

0.2

0.3

0.4

FIG. 1. The AMS boron to carbon ratio (B=C) as a function of
rigidity in the interval from 1.9 GV to 2.6 TV based on 2.3 million
boron and 8.3 million carbon nuclei. The dashed line shows
the single power law fit starting from 65 GV with index Δ ¼
−0.333� 0.014ðfitÞ � 0.005ðsystÞ.
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The effective acceptances AZ
i were calculated using MC

simulation, and corrected for small differences between the
data and MC calculations related to (a) event reconstruction
and selection, namely, in the efficiencies of velocity
determination, track finding, charge determination, and
tracker quality cuts and (b) the inelastic interactions in
the AMS materials. The total correction to the acceptance
term AB

i =A
C
i was found to be < 5% over the entire

rigidity range.
The systematic error on the B=C ratio associated with the

reconstruction and selection is < 1% over the entire
rigidity range.
The material traversed by nuclei between L1 and L9 is

composed primarily of carbon and aluminum, as described
in detail in Ref. [5]. The corresponding inelastic cross
sections for Cþ C and Cþ Al have only been measured
below 10 GV [33], and there is no data for Bþ C and
Bþ Al. To verify the MC predictions, boron and carbon
event samples that traverse materials between L8 and L9
(Lower TOF and RICH) without interacting are measured
in data and compared with MC calculations with Glauber-
Gribov inelastic cross sections varied within �10%. The
resulting cross sections with the best agreement to data
above 30 GV were chosen. Figure 4 of the Supplemental
Material [31] shows the measured survival probabilities
between L8 and L9 compared with the simulation for boron
and carbon. The survival probability between L1 and L2
has been calculated using data periods in which AMS
was horizontal, i.e., ∼90° with respect to the zenith [5].
This independently verifies the inelastic cross sections.
The systematic error on the B=C ratio from the ratio of
the acceptances due to uncertainties of inelastic cross
sections is evaluated to be 3% at 4 GV decreasing to <2%
above 10 GV.
An additional systematic error on the B=C ratio is due to

the difference in the interaction of 10B and 11B within
the detector material. This error is <0.3% over the entire
rigidity range, and was obtained assuming an isotopic
composition of YB ¼ 11B=ð10Bþ 11BÞ ¼ 0.7� 0.1 for
boron and pure 12C for carbon. These compositions have
been measured by AMS between 1 to 10 GeV=n by
comparing fluxes derived in rigidity using the tracker with
the fluxes measured in kinetic energy using TOF and
RICH [32].
The rigidity resolution functions Δð1=RÞ for boron and

carbon are similar to that of helium discussed in Ref. [5].
They have a pronounced Gaussian core characterized by
width σ and non-Gaussian tails more than 2.5σ away from
the center. The resolution functions have been verified with
four procedures. First, the differences of the coordinates
measured in L3 or L5 to those obtained from the track fit
using the measurements from L1, L2, L4, L6, L7, and L8
were compared between data and simulation. This pro-
cedure directly measures the tracker bending coordinate
accuracy of 8 μm for boron and 10 μm carbon, as shown in

Fig. 5 of the Supplemental Material [31]. Similar results
were obtained for the rest of the inner tracker layers.
Second, the distribution of the scattering angle, defined as
the difference between the inner tracker track and the L1 to
L2 trajectory, was compared between data and simulation
as shown in Fig. 6 of the Supplemental Material [31] for
carbon, and found to be in good agreement. This com-
parison verifies the multiple, nucleus-nucleus elastic, and
quasielastic scatterings. Third, in order to validate the
alignment of the external layers L1 and L9, the difference
between the rigidities measured using the information from
L1 to L8 and from L2 to L9 were compared between data
and the simulation and found to be in good agreement
similar to Ref. [4]. Fourth, the RICH velocity resolution is
Δβ=β ¼ 5 × 10−4 [34] for carbon. The carbon rigidity
resolution function up to 20 GV, including non-Gaussian
tails, was obtained with data using the RICH only and
found to be in good agreement with the rigidity resolution
function from the simulation similar to Ref. [5].
The first three procedures provide the MDR of 3 TV for

boron and 2.6 TV for carbon with 5% uncertainty. The
second, third, and fourth verify the nucleus-nucleus elastic
and quasielastic scattering in the AMS materials and
provide the uncertainty of the amplitude of the non-
Gaussian tails in the rigidity resolution function to be 10%.
The systematic error on the B=C ratio due to the rigidity

resolution functions was obtained by repeating the
unfolding procedure varying the widths of the Gaussian
core of resolution functions by 5% for both boron and
carbon, and varying the amplitude of the non-Gaussian tails
by 10%. The resulting systematic error is less than 1%
below 100 GV and increasing to 5% at 2.6 TV.
There are two contributions to the systematic uncertainty

on the B=C ratio, from residual tracker misalignment and
from magnetic field temperature correction, as discussed in
Ref. [4]. The error is derived by simultaneously modifying
the boron and carbon rigidity scales for alignment and
magnetic field estimated uncertainties. The resulting error
is <1% below to 100 GV and 2.5% at 2.6 TV.
To ensure that the treatment of systematic errors is

correct an additional verification was performed.
Figure 7 of the Supplemental Material [31] shows the ratio
of two measurements of the B=C ratio from 1.9 GV to
0.88 TV performed using events passing through L1 to L8
and using events passing through L1 to L9. The good
agreement between the two measurements verifies (a) the
systematic errors due to the difference in the resolution
functions and (b) systematic errors on acceptance due to the
difference in geometric factor and the amount of material
traversed.
Most importantly, several independent analyses were

performed on the same data sample by different study
groups. The results of those analyses are consistent with
this Letter.
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Results.—The measured B=C ratio including statistical
errors and systematic errors is tabulated in Table I of the
Supplemental Material [31] as a function of the rigidity at
the top of the AMS detector. The contributions to the
systematic errors come from (i) the background subtrac-
tion, (ii) the trigger and the acceptance calculation, (iii) the
unfolding procedure and the rigidity resolution function,
(iv) the absolute rigidity scale. The contribution of
individual sources to the systematic error are added in
quadrature to arrive at the total systematic error. The
Monte Carlo event samples have sufficient statistics such
that they do not contribute to the errors.
Figure 1 shows the B=C ratio as a function of rigidity

with the total errors, the sum in quadrature of statistical and
systematic errors.
The B=C ratio increases with rigidity reaching a maxi-

mum at 4 GV then decreases. The B=C ratio does not show
any significant structures. The current, more precise data
will allow stringent limits to be placed on models that
require such structures [6–8].
Above 65 GV the B=C ratio measured by AMS is well fit

with a single power law ðB=CÞ ¼ kRΔ, where k is a constant
normalization factor, with a χ2=d:o:f: ¼ 20=24 and a
spectral index Δ¼−0.333�0.014ðfitÞ�0.005ðsystÞ. The
first error (fit) takes into account the statistical and uncorre-
lated systematic errors, the second (syst) is the error from
the remaining systematic errors, namely, from the rigidity
resolution function, rigidity scale, and boron and carbon
inelastic cross sections, with proper accounting of the bin-
to-bin correlations.We obtain a consistent value ofΔ starting
the fitting in the range from 50 to 80 GV. The measured Δ is
in good agreement with the Kolmogorov theory of turbu-
lence which predicts Δ ¼ −1=3 asymptotically [1,2].
To obtain the variation of the spectral index Δ with

rigidity in a model independent way, the spectral index is
calculated from

Δ ¼ d½logðB=CÞ�=d½logðRÞ� ð3Þ
over nonoverlapping rigidity intervals. The result of this
fitting procedure is shown in Fig. 2.
To compare AMS results with previous measurements

the following procedure to convert the B=C ratio from
rigidity to kinetic energy per nucleon EK is used. The
kinetic energy per nucleon binning is derived from the

rigidity binning using EK ¼ 1
12
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6RÞ2 þM2

C

p
−MCÞ

where MC is the 12C mass. The obtained binning was
converted back into a new rigidity binning for the boron

measurement using ~R ¼ 1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABEK þMBÞ2 −M2

B

p
where

AB ¼ 10ð1 − YBÞ þ 11YB and MB ¼ M10Bð1 − YBÞþ
M11BYB, whereM10B andM11B are the 10B and 11B masses,
and YB is the assumed boron isotopic composition YB ¼
0.7� 0.1 according to AMS low energy measurements
[32]. The B=C ratio in Eq. (2) has been obtained using

NB
i , AB

i and ϵBi calculated for each bin ð ~Ri; ~Ri þ Δ ~RiÞ
and NC

i , A
C
i , and ϵCi from the original rigidity binning

ðRi;Ri þ ΔRiÞ. An additional systematic error due to the
conversion procedure is derived varying the boron isotopic
composition in the range YB ¼ 0.7� 0.1. This error is 1%
at 1 GeV=n and increases up to 4% at 1.3 TeV=n.
The B=C ratio in kinetic energy per nucleon is presented

in Table II of the Supplemental Material [31], including
errors converted from corresponding errors in Table I of the
Supplemental Material [31] with the additional error due to
conversion. Figure 3 shows the AMS B=C ratio together
with recent results. Also shown is the prediction for the
B=C ratio from an important theoretical model [7], which
explains the AMS positron fraction [10] and antiproton
results [11] by secondary production in cosmic ray propa-
gation. The model shown is ruled out by this measurement.
In conclusion, the precise measurement of the boron to

carbon flux ratio in cosmic rays with rigidity from 1.9 GV
to 2.6 TV based on 2.3 million boron and 8.3 million
carbon nuclei is presented. The B=C ratio increases with
rigidity reaching a maximum at 4 GV then decreases.
The B=C ratio does not show any significant structures.
The current, more precise data will allow stringent limits to
be placed on models that require such structures [6–8].
Above 65 GV the B=C ratio can be described by a single
power law of Δ ¼ −0.333� 0.014ðfitÞ � 0.005ðsystÞ, in
good agreement with the Kolmogorov theory of turbulence
which predicts Δ ¼ −1=3 asymptotically [1,2].
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