000825213 001__ 825213
000825213 005__ 20210129225241.0
000825213 0247_ $$2doi$$a10.1016/j.neuroimage.2016.08.010
000825213 0247_ $$2ISSN$$a1053-8119
000825213 0247_ $$2ISSN$$a1095-9572
000825213 0247_ $$2WOS$$aWOS:000387986000046
000825213 0247_ $$2altmetric$$aaltmetric:10552848
000825213 0247_ $$2pmid$$apmid:27523448
000825213 037__ $$aFZJ-2016-07684
000825213 082__ $$a610
000825213 1001_ $$0P:(DE-Juel1)161212$$aDombert, Pascasie L.$$b0$$eCorresponding author$$ufzj
000825213 245__ $$aFunctional mechanisms of probabilistic inference in feature- and space-based attentional systems
000825213 260__ $$aOrlando, Fla.$$bAcademic Press$$c2016
000825213 3367_ $$2DRIVER$$aarticle
000825213 3367_ $$2DataCite$$aOutput Types/Journal article
000825213 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482154914_5866
000825213 3367_ $$2BibTeX$$aARTICLE
000825213 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825213 3367_ $$00$$2EndNote$$aJournal Article
000825213 520__ $$aHumans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations.
000825213 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000825213 588__ $$aDataset connected to CrossRef
000825213 7001_ $$0P:(DE-Juel1)161249$$aKuhns, Anna$$b1$$ufzj
000825213 7001_ $$0P:(DE-Juel1)166200$$aMengotti, Paola$$b2$$ufzj
000825213 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b3$$ufzj
000825213 7001_ $$0P:(DE-Juel1)131745$$aVossel, Simone$$b4$$ufzj
000825213 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2016.08.010$$gVol. 142, p. 553 - 564$$p553 - 564$$tNeuroImage$$v142$$x1053-8119$$y2016
000825213 8564_ $$uhttps://juser.fz-juelich.de/record/825213/files/1-s2.0-S1053811916303883-main.pdf$$yRestricted
000825213 8564_ $$uhttps://juser.fz-juelich.de/record/825213/files/1-s2.0-S1053811916303883-main.gif?subformat=icon$$xicon$$yRestricted
000825213 8564_ $$uhttps://juser.fz-juelich.de/record/825213/files/1-s2.0-S1053811916303883-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825213 8564_ $$uhttps://juser.fz-juelich.de/record/825213/files/1-s2.0-S1053811916303883-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825213 8564_ $$uhttps://juser.fz-juelich.de/record/825213/files/1-s2.0-S1053811916303883-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825213 8564_ $$uhttps://juser.fz-juelich.de/record/825213/files/1-s2.0-S1053811916303883-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825213 909CO $$ooai:juser.fz-juelich.de:825213$$pVDB
000825213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161212$$aForschungszentrum Jülich$$b0$$kFZJ
000825213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161249$$aForschungszentrum Jülich$$b1$$kFZJ
000825213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166200$$aForschungszentrum Jülich$$b2$$kFZJ
000825213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ
000825213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131745$$aForschungszentrum Jülich$$b4$$kFZJ
000825213 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000825213 9141_ $$y2016
000825213 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825213 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000825213 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825213 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825213 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000825213 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825213 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825213 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825213 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825213 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000825213 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825213 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000825213 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825213 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825213 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825213 920__ $$lyes
000825213 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000825213 980__ $$ajournal
000825213 980__ $$aVDB
000825213 980__ $$aUNRESTRICTED
000825213 980__ $$aI:(DE-Juel1)INM-3-20090406