001     825271
005     20240709074321.0
024 7 _ |a 10.1002/2016GL072007
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a WOS:000393954900055
|2 WOS
024 7 _ |a 2128/16020
|2 Handle
037 _ _ |a FZJ-2016-07742
082 _ _ |a 550
100 1 _ |a Ern, M.
|0 P:(DE-Juel1)129117
|b 0
|e Corresponding author
245 _ _ |a Directional gravity wave momentum fluxes in the stratosphere derived from high resolution AIRS temperature data
260 _ _ |a Hoboken, NJ
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512048782_20645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to reduce uncertainties in modeling the stratospheric circulation, global observations of gravity wave momentum flux (GWMF) vectors are required for comparison with distributions of resolved and parametrized GWMF in global models. For the first time, we derive GWMF vectors globally from data of a nadir-viewing satellite instrument: we apply a 3D method to an Atmospheric Infrared Sounder (AIRS) temperature dataset that was optimized for gravity wave (GW) analysis. For January 2009, the resulting distributions of GW amplitudes and of net GWMF highlight the importance of GWs in the polar vortex and the summertime subtropics. Net GWMF is preferentially directed opposite to the background wind, and, interestingly, it is dominated by large amplitude GWs of relatively long horizontal wavelength. For convective GW sources, these large horizontal scales are in contradiction with traditional thoughts. However, the observational filter effect needs to be kept in mind when interpreting the results.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 1
700 1 _ |a Preusse, P.
|0 P:(DE-Juel1)129143
|b 2
773 _ _ |a 10.1002/2016GL072007
|0 PERI:(DE-600)2021599-X
|n 1
|p 475-485
|t Geophysical research letters
|v 44
|y 2017
|x 0094-8276
856 4 _ |y Published on 2017-01-05. Available in OpenAccess from 2017-07-05.
|u https://juser.fz-juelich.de/record/825271/files/Ern_et_al-2017-Geophysical_Research_Letters.pdf
856 4 _ |y Published on 2017-01-05. Available in OpenAccess from 2017-07-05.
|x icon
|u https://juser.fz-juelich.de/record/825271/files/Ern_et_al-2017-Geophysical_Research_Letters.gif?subformat=icon
856 4 _ |y Published on 2017-01-05. Available in OpenAccess from 2017-07-05.
|x icon-1440
|u https://juser.fz-juelich.de/record/825271/files/Ern_et_al-2017-Geophysical_Research_Letters.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-01-05. Available in OpenAccess from 2017-07-05.
|x icon-180
|u https://juser.fz-juelich.de/record/825271/files/Ern_et_al-2017-Geophysical_Research_Letters.jpg?subformat=icon-180
856 4 _ |y Published on 2017-01-05. Available in OpenAccess from 2017-07-05.
|x icon-640
|u https://juser.fz-juelich.de/record/825271/files/Ern_et_al-2017-Geophysical_Research_Letters.jpg?subformat=icon-640
856 4 _ |y Published on 2017-01-05. Available in OpenAccess from 2017-07-05.
|x pdfa
|u https://juser.fz-juelich.de/record/825271/files/Ern_et_al-2017-Geophysical_Research_Letters.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825271
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129143
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS RES LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21