000825306 001__ 825306
000825306 005__ 20210129225256.0
000825306 0247_ $$2doi$$a10.3389/fnbeh.2016.00148
000825306 0247_ $$2Handle$$a2128/13338
000825306 0247_ $$2WOS$$aWOS:000379994800001
000825306 0247_ $$2altmetric$$aaltmetric:9538482
000825306 0247_ $$2pmid$$apmid:27493627
000825306 037__ $$aFZJ-2016-07770
000825306 041__ $$aEnglish
000825306 082__ $$a610
000825306 1001_ $$0P:(DE-HGF)0$$aRohleder, Cathrin$$b0$$eCorresponding author
000825306 245__ $$aThe Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats
000825306 260__ $$aLausanne$$bFrontiers Research Foundation$$c2016
000825306 3367_ $$2DRIVER$$aarticle
000825306 3367_ $$2DataCite$$aOutput Types/Journal article
000825306 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482389518_969
000825306 3367_ $$2BibTeX$$aARTICLE
000825306 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825306 3367_ $$00$$2EndNote$$aJournal Article
000825306 520__ $$aPrepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus (“prepulse”) attenuates the motor response (“startle reaction”) to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [18F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.
000825306 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000825306 588__ $$aDataset connected to CrossRef
000825306 7001_ $$0P:(DE-HGF)0$$aWiedermann, Dirk$$b1
000825306 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b2$$ufzj
000825306 7001_ $$0P:(DE-HGF)0$$aDrzezga, Alexander$$b3
000825306 7001_ $$0P:(DE-HGF)0$$aTimmermann, Lars$$b4
000825306 7001_ $$0P:(DE-HGF)0$$aGraf, Rudolf$$b5
000825306 7001_ $$0P:(DE-HGF)0$$aLeweke, F. Markus$$b6
000825306 7001_ $$0P:(DE-HGF)0$$aEndepols, Heike$$b7
000825306 773__ $$0PERI:(DE-600)2452960-6$$a10.3389/fnbeh.2016.00148$$gVol. 10$$p148$$tFrontiers in behavioral neuroscience$$v10$$x1662-5153$$y2016
000825306 8564_ $$uhttps://juser.fz-juelich.de/record/825306/files/fnbeh-10-00148.pdf$$yOpenAccess
000825306 8564_ $$uhttps://juser.fz-juelich.de/record/825306/files/fnbeh-10-00148.gif?subformat=icon$$xicon$$yOpenAccess
000825306 8564_ $$uhttps://juser.fz-juelich.de/record/825306/files/fnbeh-10-00148.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825306 8564_ $$uhttps://juser.fz-juelich.de/record/825306/files/fnbeh-10-00148.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825306 8564_ $$uhttps://juser.fz-juelich.de/record/825306/files/fnbeh-10-00148.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825306 8564_ $$uhttps://juser.fz-juelich.de/record/825306/files/fnbeh-10-00148.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825306 909CO $$ooai:juser.fz-juelich.de:825306$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b2$$kFZJ
000825306 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000825306 9141_ $$y2016
000825306 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825306 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000825306 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000825306 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT BEHAV NEUROSCI : 2015
000825306 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825306 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825306 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825306 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825306 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825306 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825306 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825306 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825306 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825306 920__ $$lyes
000825306 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000825306 980__ $$ajournal
000825306 980__ $$aVDB
000825306 980__ $$aUNRESTRICTED
000825306 980__ $$aI:(DE-Juel1)INM-5-20090406
000825306 9801_ $$aFullTexts