000825336 001__ 825336 000825336 005__ 20210129225302.0 000825336 037__ $$aFZJ-2016-07799 000825336 1001_ $$0P:(DE-Juel1)145643$$aHasan, Nesreen$$b0$$eCorresponding author 000825336 1112_ $$aIAS Symposium 2016$$cJülich$$d2016-12-05 - 2016-12-06$$wGermany 000825336 245__ $$aComputing the nucleon Dirac radius directly at Q²=0 000825336 260__ $$c2016 000825336 3367_ $$033$$2EndNote$$aConference Paper 000825336 3367_ $$2BibTeX$$aINPROCEEDINGS 000825336 3367_ $$2DRIVER$$aconferenceObject 000825336 3367_ $$2ORCID$$aCONFERENCE_POSTER 000825336 3367_ $$2DataCite$$aOutput Types/Conference Poster 000825336 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1485240742_15334$$xOther 000825336 520__ $$aWe describe a lattice approach for directly computing momentum derivatives of nucleon matrix elements using the Rome method, which we apply to obtain the isovector magnetic moment and Dirac radius. We present preliminary results calculated at the physical pion mass using a 2HEX-smeared Wilson-clover action. For removing the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. 000825336 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000825336 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b1 000825336 7001_ $$0P:(DE-HGF)0$$aGreen, Jeremy$$b2 000825336 7001_ $$0P:(DE-HGF)0$$aEngelhardt, Michael$$b3 000825336 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b4 000825336 7001_ $$0P:(DE-HGF)0$$aNegele, John$$b5 000825336 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew$$b6 000825336 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b7 000825336 7001_ $$0P:(DE-HGF)0$$aLippert, Thomas$$b8 000825336 909CO $$ooai:juser.fz-juelich.de:825336$$pVDB 000825336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145643$$aForschungszentrum Jülich$$b0$$kFZJ 000825336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b4$$kFZJ 000825336 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000825336 9141_ $$y2016 000825336 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000825336 920__ $$lyes 000825336 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000825336 980__ $$aposter 000825336 980__ $$aVDB 000825336 980__ $$aUNRESTRICTED 000825336 980__ $$aI:(DE-Juel1)JSC-20090406