000825339 001__ 825339
000825339 005__ 20240610115725.0
000825339 0247_ $$2doi$$a10.1088/1742-5468/2016/09/093211
000825339 0247_ $$2WOS$$aWOS:000385688700001
000825339 037__ $$aFZJ-2016-07802
000825339 082__ $$a530
000825339 1001_ $$0P:(DE-HGF)0$$aPopkov, V.$$b0
000825339 245__ $$aExact scaling solution of the mode coupling equations for non-linear fluctuating hydrodynamics in one dimension
000825339 260__ $$aBristol$$bIOP Publ.$$c2016
000825339 3367_ $$2DRIVER$$aarticle
000825339 3367_ $$2DataCite$$aOutput Types/Journal article
000825339 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482235964_9857
000825339 3367_ $$2BibTeX$$aARTICLE
000825339 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825339 3367_ $$00$$2EndNote$$aJournal Article
000825339 520__ $$aWe obtain the exact solution of the one-loop mode-coupling equations for the dynamical structure function in the framework of non-linear fluctuating hydrodynamics in one space dimension for the strictly hyperbolic case where all characteristic velocities are different. All solutions are characterized by dynamical exponents which are Kepler ratios of consecutive Fibonacci numbers, which includes the golden mean as a limiting case. The scaling form of all higher Fibonacci modes are asymmetric Lévy-distributions. Thus a hierarchy of new dynamical universality classes is established. We also compute the precise numerical value of the Prähofer–Spohn scaling constant to which scaling functions obtained from mode coupling theory are sensitive.
000825339 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000825339 588__ $$aDataset connected to CrossRef
000825339 7001_ $$0P:(DE-HGF)0$$aSchadschneider, A.$$b1
000825339 7001_ $$0P:(DE-HGF)0$$aSchmidt, J.$$b2$$eCorresponding author
000825339 7001_ $$0P:(DE-Juel1)130966$$aSchütz, G. M.$$b3
000825339 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/2016/09/093211$$gVol. 2016, no. 9, p. 093211 -$$n9$$p093211$$tJournal of statistical mechanics: theory and experiment$$v2016$$x1742-5468$$y2016
000825339 8564_ $$uhttps://juser.fz-juelich.de/record/825339/files/Popkov_2016_J._Stat._Mech._2016_093211.pdf$$yRestricted
000825339 8564_ $$uhttps://juser.fz-juelich.de/record/825339/files/Popkov_2016_J._Stat._Mech._2016_093211.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825339 909CO $$ooai:juser.fz-juelich.de:825339$$pVDB
000825339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich$$b3$$kFZJ
000825339 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000825339 9141_ $$y2016
000825339 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825339 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STAT MECH-THEORY E : 2015
000825339 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825339 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825339 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825339 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825339 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825339 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825339 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825339 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000825339 980__ $$ajournal
000825339 980__ $$aVDB
000825339 980__ $$aI:(DE-Juel1)ICS-2-20110106
000825339 980__ $$aUNRESTRICTED
000825339 981__ $$aI:(DE-Juel1)IBI-5-20200312
000825339 981__ $$aI:(DE-Juel1)IAS-2-20090406