001     825364
005     20210129225307.0
024 7 _ |a 10.1109/SC.2016.37
|2 doi
037 _ _ |a FZJ-2016-07827
100 1 _ |a Rajovic, Nikola
|0 P:(DE-HGF)0
|b 0
111 2 _ |a SC '16
|c Salt Lake City, Utah
|d 2016-11-13 - 2016-11-18
|w USA
245 _ _ |a The Mont-Blanc Prototype: An Alternative Approach for HPC Systems
260 _ _ |a Piscataway, NJ, USA
|c 2016
|b IEEE Press
295 1 0 |a Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
300 _ _ |a 444-455
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1502086387_15123
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a High-performance computing (HPC) is recognized as one of the pillars for further progress in science, industry, medicine, and education. Current HPC systems are being developed to overcome emerging architectural challenges in order to reach Exascale level of performance, projected for the year 2020. The much larger embedded and mobile market allows for rapid development of intellectual property (IP) blocks and provides more flexibility in designing an application-specific system-on-chip (SoC), in turn providing the possibility in balancing performance, energy-efficiency, and cost. In the Mont-Blanc project, we advocate for HPC systems being built from such commodity IP blocks, currently used in embedded and mobile SoCs.As a first demonstrator of such an approach, we present the Mont-Blanc prototype; the first HPC system built with commodity SoCs, memories, and network interface cards (NICs) from the embedded and mobile domain, and off-the-shelf HPC networking, storage, cooling, and integration solutions. We present the system's architecture and evaluate both performance and energy efficiency. Further, we compare the system's abilities against a production level supercomputer. At the end, we discuss parallel scalability and estimate the maximum scalability point of this approach across a set of applications.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a MONT-BLANC 2 - Mont-Blanc 2, European scalable and power efficient HPC platform based onlow-power embedded technology (610402)
|0 G:(EU-Grant)610402
|c 610402
|f FP7-ICT-2013-10
|x 1
536 _ _ |a MONT-BLANC - Mont-Blanc, European scalable and power efficient HPC platform based on low-power embedded technology (288777)
|0 G:(EU-Grant)288777
|c 288777
|f FP7-ICT-2011-7
|x 2
700 1 _ |a Rico, Alejandro
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mantovani, Filippo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ruiz, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vilarrubi, Josep Oriol
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gomez, Constantino
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Backes, Luna
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nieto, Diego
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Servat, Harald
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Martorell, Xavier
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Labarta, Jesus
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ayguade, Eduard
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Adeniyi-Jones, Chris
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Derradji, Said
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gloaguen, Herve
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lanucara, Piero
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Sanna, Nico
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Mehaut, Jean-Francois
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Pouget, Kevin
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Videau, Brice
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Boyer, Eric
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Allalen, Momme
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Auweter, Axel
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Brayford, David
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Tafani, Daniele
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Weinberg, Volker
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Brömmel, Dirk
|0 P:(DE-Juel1)143606
|b 26
|u fzj
700 1 _ |a Halver, Rene
|0 P:(DE-Juel1)132124
|b 27
|u fzj
700 1 _ |a Meinke, Jan
|0 P:(DE-Juel1)132189
|b 28
|u fzj
700 1 _ |a Beivide, Ramon
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Benito, Mariano
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Vallejo, Enrique
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Valero, Mateo
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Ramirez, Alex
|0 P:(DE-HGF)0
|b 33
773 _ _ |a 10.1109/SC.2016.37
|p 38
856 4 _ |u https://juser.fz-juelich.de/record/825364/files/submissions.supercomputing.org.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825364/files/submissions.supercomputing.org.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825364/files/submissions.supercomputing.org.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825364/files/submissions.supercomputing.org.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825364/files/submissions.supercomputing.org.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825364/files/submissions.supercomputing.org.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825364
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)143606
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)132124
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)132189
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21