000825373 001__ 825373
000825373 005__ 20240610120301.0
000825373 0247_ $$2doi$$a10.1021/acs.nanolett.5b04636
000825373 0247_ $$2WOS$$aWOS:000371946300031
000825373 037__ $$aFZJ-2016-07836
000825373 041__ $$aEnglish
000825373 082__ $$a540
000825373 1001_ $$0P:(DE-HGF)0$$aBeermann, Vera$$b0
000825373 245__ $$aRh doped Pt-Ni octahedral nanoparticles: Correlation between elemental Distribution and ORR stabilty
000825373 260__ $$aWashington, DC$$bACS Publ.$$c2016
000825373 3367_ $$2DRIVER$$aarticle
000825373 3367_ $$2DataCite$$aOutput Types/Journal article
000825373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482242019_9862
000825373 3367_ $$2BibTeX$$aARTICLE
000825373 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825373 3367_ $$00$$2EndNote$$aJournal Article
000825373 520__ $$aThanks to their remarkably high activity toward oxygen reduction reaction (ORR), platinum-based octahedrally shaped nanoparticles have attracted ever increasing attention in last years. Although high activities for ORR catalysts have been attained, the practical use is still limited by their long-term stability. In this work, we present Rh-doped Pt–Ni octahedral nanoparticles with high activities up to 1.14 A mgPt–1 combined with improved performance and shape stability compared to previous bimetallic Pt–Ni octahedral particles. The synthesis, the electrocatalytic performance of the particles toward ORR, and atomic degradation mechanisms are investigated with a major focus on a deeper understanding of strategies to stabilize morphological particle shape and consequently their performance. Rh surface-doped octahedral Pt–Ni particles were prepared at various Rh levels. At and above about 3 atom %, the nanoparticles maintained their octahedral shape even past 30 000 potential cycles, while undoped bimetallic reference nanoparticles show a complete loss in octahedral shape already after 8000 cycles in the same potential window. Detailed atomic insight in these observations is obtained from aberration-corrected scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) analysis. Our analysis shows that it is the migration of Pt surface atoms and not, as commonly thought, the dissolution of Ni that constitutes the primary origin of the octahedral shape loss for Pt–Ni nanoparticles. Using small amounts of Rh we were able to suppress the migration rate of platinum atoms and consequently suppress the octahedral shape loss of Pt–Ni nanoparticles.
000825373 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000825373 7001_ $$0P:(DE-Juel1)166087$$aGocyla, Martin$$b1
000825373 7001_ $$0P:(DE-HGF)0$$aWillinger, Elena$$b2
000825373 7001_ $$0P:(DE-Juel1)165215$$aRudi, Stefan$$b3
000825373 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b4
000825373 7001_ $$0P:(DE-HGF)0$$aWillinger, Marc$$b5
000825373 7001_ $$0P:(DE-HGF)0$$aPeter, Strasser.$$b6$$eCorresponding author
000825373 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.5b04636$$n3$$p1719 - 1725$$tNano letters$$v16$$x1530-6984$$y2016
000825373 8564_ $$uhttps://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.pdf$$yRestricted
000825373 8564_ $$uhttps://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.gif?subformat=icon$$xicon$$yRestricted
000825373 8564_ $$uhttps://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825373 8564_ $$uhttps://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825373 8564_ $$uhttps://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825373 8564_ $$uhttps://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825373 909CO $$ooai:juser.fz-juelich.de:825373$$pVDB
000825373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166087$$aForschungszentrum Jülich$$b1$$kFZJ
000825373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165215$$aForschungszentrum Jülich$$b3$$kFZJ
000825373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b4$$kFZJ
000825373 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000825373 9141_ $$y2016
000825373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825373 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015
000825373 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015
000825373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825373 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825373 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825373 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825373 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825373 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825373 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825373 920__ $$lyes
000825373 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825373 980__ $$ajournal
000825373 980__ $$aVDB
000825373 980__ $$aUNRESTRICTED
000825373 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825373 981__ $$aI:(DE-Juel1)ER-C-1-20170209