001     825373
005     20240610120301.0
024 7 _ |a 10.1021/acs.nanolett.5b04636
|2 doi
024 7 _ |a WOS:000371946300031
|2 WOS
037 _ _ |a FZJ-2016-07836
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Beermann, Vera
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rh doped Pt-Ni octahedral nanoparticles: Correlation between elemental Distribution and ORR stabilty
260 _ _ |a Washington, DC
|c 2016
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1482242019_9862
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thanks to their remarkably high activity toward oxygen reduction reaction (ORR), platinum-based octahedrally shaped nanoparticles have attracted ever increasing attention in last years. Although high activities for ORR catalysts have been attained, the practical use is still limited by their long-term stability. In this work, we present Rh-doped Pt–Ni octahedral nanoparticles with high activities up to 1.14 A mgPt–1 combined with improved performance and shape stability compared to previous bimetallic Pt–Ni octahedral particles. The synthesis, the electrocatalytic performance of the particles toward ORR, and atomic degradation mechanisms are investigated with a major focus on a deeper understanding of strategies to stabilize morphological particle shape and consequently their performance. Rh surface-doped octahedral Pt–Ni particles were prepared at various Rh levels. At and above about 3 atom %, the nanoparticles maintained their octahedral shape even past 30 000 potential cycles, while undoped bimetallic reference nanoparticles show a complete loss in octahedral shape already after 8000 cycles in the same potential window. Detailed atomic insight in these observations is obtained from aberration-corrected scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) analysis. Our analysis shows that it is the migration of Pt surface atoms and not, as commonly thought, the dissolution of Ni that constitutes the primary origin of the octahedral shape loss for Pt–Ni nanoparticles. Using small amounts of Rh we were able to suppress the migration rate of platinum atoms and consequently suppress the octahedral shape loss of Pt–Ni nanoparticles.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
700 1 _ |a Gocyla, Martin
|0 P:(DE-Juel1)166087
|b 1
700 1 _ |a Willinger, Elena
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rudi, Stefan
|0 P:(DE-Juel1)165215
|b 3
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 4
700 1 _ |a Willinger, Marc
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Peter, Strasser.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.5b04636
|0 PERI:(DE-600)2048866-X
|n 3
|p 1719 - 1725
|t Nano letters
|v 16
|y 2016
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825373/files/acs.nanolett.5b04636.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825373
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166087
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21