000825374 001__ 825374
000825374 005__ 20240610120301.0
000825374 0247_ $$2doi$$a10.1016/j.nanoen.2016.07.024
000825374 0247_ $$2WOS$$aWOS:000384910500043
000825374 037__ $$aFZJ-2016-07837
000825374 082__ $$a540
000825374 1001_ $$0P:(DE-HGF)0$$aArán-Ais, Rosa M.$$b0
000825374 245__ $$aThe effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction
000825374 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000825374 3367_ $$2DRIVER$$aarticle
000825374 3367_ $$2DataCite$$aOutput Types/Journal article
000825374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482242746_9863
000825374 3367_ $$2BibTeX$$aARTICLE
000825374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825374 3367_ $$00$$2EndNote$$aJournal Article
000825374 520__ $$aThe effect of interfacial pH during the surface cleaning of shape-selected PtNi nanoparticles was investigated. High-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX) elemental mapping techniques were used to analyze the morphology and composition of the particles at the nanoscale. The particles show similar atomic compositions for both treated samples but different elemental distribution on the surface of the nanooctahedra. X-ray photoelectron spectroscopy (XPS) analysis confirmed different surface compositions and the presence of different oxidation states species at the outer part of the nanoparticles. In addition, we compare characteristic voltammetric profiles of these nanocatalysts when immersed in three different aqueous supporting electrolytes (H2SO4, HClO4 and NaOH). The behavior of the bimetallic nanoparticles towards adsorbed CO oxidation has been analyzed and compared with that observed after surface disordering of the same catalysts. The electrocatalytic activity of these nanoparticles has been also tested for the electroreduction of oxygen showing high specific and mass activity and better catalytic performance than pure Pt shaped nanoparticles. The different treatments applied to the surface of the nanocatalysts have led to remarkably different catalytic responses, pointing out the outstanding importance of the control of the surface of the alloyed shape-selected nanoparticles after their synthesis and before their use as electrocatalysts.
000825374 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000825374 588__ $$aDataset connected to CrossRef
000825374 7001_ $$0P:(DE-HGF)0$$aSolla-Gullón, José$$b1
000825374 7001_ $$0P:(DE-Juel1)166087$$aGocyla, Martin$$b2
000825374 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3
000825374 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4
000825374 7001_ $$0P:(DE-HGF)0$$aStrasser, Peter$$b5
000825374 7001_ $$0P:(DE-HGF)0$$aHerrero, Enrique$$b6
000825374 7001_ $$0P:(DE-HGF)0$$aFeliu, Juan M.$$b7$$eCorresponding author
000825374 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2016.07.024$$gVol. 27, p. 390 - 401$$p390 - 401$$tNano energy$$v27$$x2211-2855$$y2016
000825374 8564_ $$uhttps://juser.fz-juelich.de/record/825374/files/1-s2.0-S2211285516302646-main.pdf$$yRestricted
000825374 8564_ $$uhttps://juser.fz-juelich.de/record/825374/files/1-s2.0-S2211285516302646-main.gif?subformat=icon$$xicon$$yRestricted
000825374 8564_ $$uhttps://juser.fz-juelich.de/record/825374/files/1-s2.0-S2211285516302646-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825374 8564_ $$uhttps://juser.fz-juelich.de/record/825374/files/1-s2.0-S2211285516302646-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825374 8564_ $$uhttps://juser.fz-juelich.de/record/825374/files/1-s2.0-S2211285516302646-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825374 8564_ $$uhttps://juser.fz-juelich.de/record/825374/files/1-s2.0-S2211285516302646-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825374 909CO $$ooai:juser.fz-juelich.de:825374$$pVDB
000825374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166087$$aForschungszentrum Jülich$$b2$$kFZJ
000825374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000825374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000825374 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000825374 9141_ $$y2016
000825374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825374 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2015
000825374 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO ENERGY : 2015
000825374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825374 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825374 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825374 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825374 920__ $$lyes
000825374 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825374 980__ $$ajournal
000825374 980__ $$aVDB
000825374 980__ $$aUNRESTRICTED
000825374 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825374 981__ $$aI:(DE-Juel1)ER-C-1-20170209