000825379 001__ 825379
000825379 005__ 20221109161714.0
000825379 0247_ $$2Handle$$a2128/13330
000825379 037__ $$aFZJ-2016-07842
000825379 041__ $$aEnglish
000825379 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding author$$ufzj
000825379 1112_ $$aJoint Laboratory for Extreme Scale Computing$$cKobe$$d2016-11-30 - 2016-12-02$$gJLESC$$wJapan
000825379 245__ $$aEfficient parallel implementation of the ChASE library on distributed CPU-GPU architectures
000825379 260__ $$c2016
000825379 3367_ $$033$$2EndNote$$aConference Paper
000825379 3367_ $$2DataCite$$aOther
000825379 3367_ $$2BibTeX$$aINPROCEEDINGS
000825379 3367_ $$2DRIVER$$aconferenceObject
000825379 3367_ $$2ORCID$$aLECTURE_SPEECH
000825379 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1482342796_11196$$xInvited
000825379 520__ $$aThe Chebyshev Accelerated Subspace iteration Eigensolver (ChASE) is an iterative eigensolver developed at the JSC by the SimLab ab initio. The solver target principally sequences of dense eigenvalue problems as they arise in Density functional Theory, but can also work on the single eigenproblem. ChASE leverages on the preponderant use of BLAS 3 subroutines to achieve close-to-peak performance. Currently, the library can be executed in parallel on many- and multi-core platforms. The latest development of this project dealt with the extension of the CUDA build to encompass multiple GPUs on distinct CPUs. As such this hybrid parallelization will use MPI as well as CUDA interfaces effectively exploiting heterogeneous multi-GPU platforms. The extended library was tested on large and dense eigenproblems extracted from excitonic Hamiltonian. The ultimate goal is to integrate this new parallel implementation of ChASE with the VASP-BSE code.
000825379 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000825379 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000825379 8564_ $$uhttps://juser.fz-juelich.de/record/825379/files/JLESC_ChASE_slides.pdf$$yOpenAccess
000825379 8564_ $$uhttps://juser.fz-juelich.de/record/825379/files/JLESC_ChASE_slides.gif?subformat=icon$$xicon$$yOpenAccess
000825379 8564_ $$uhttps://juser.fz-juelich.de/record/825379/files/JLESC_ChASE_slides.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825379 8564_ $$uhttps://juser.fz-juelich.de/record/825379/files/JLESC_ChASE_slides.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825379 8564_ $$uhttps://juser.fz-juelich.de/record/825379/files/JLESC_ChASE_slides.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825379 8564_ $$uhttps://juser.fz-juelich.de/record/825379/files/JLESC_ChASE_slides.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825379 909CO $$ooai:juser.fz-juelich.de:825379$$pVDB$$pdriver$$popen_access$$popenaire
000825379 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b0$$kFZJ
000825379 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000825379 9141_ $$y2016
000825379 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825379 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000825379 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000825379 9801_ $$aFullTexts
000825379 980__ $$aconf
000825379 980__ $$aVDB
000825379 980__ $$aUNRESTRICTED
000825379 980__ $$aI:(DE-Juel1)JSC-20090406
000825379 980__ $$aI:(DE-82)080012_20140620