
M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

HPC generation of the Hamiltonian
and Overlap matrices in DFT
methods based on linearized and
augmented plane waves

JLESC, Kobe, December 1st 2016 Edoardo di Napoli

Motivation
Code modernization

Legacy codes in Materials Science have grown with focus on
functionality

Frequent problems:
Codes lacks modularity, encapsulation, code reuse, ...
Codes are often a direct translation of mathematical formulas

Problems get exacerbated with recent shift to heterogeneous
architectures

“Modernize or perish”
Yes, it is costly
Yes, it is necessary but benefits are substantial

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 2

Goal
Performance portability

In general

Re-engineering the software by re-thinking the algorithms;

Modular design, clear layering and interfaces;

Bottom layers: standardized and highly optimized libraries.

In this talk:

the FLEUR code as use case

Modernize a portion of the code that takes about 40% of the
computation

Required an important initial effort

We now give evidence of performance portability to
heterogeneous CPU + GPU architectures

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 3

Outline

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 4

Topic

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 5

Density Functional Theory (DFT)
1 Φ(x1; s1, x2; s2, . . . , xn; sn) =⇒ Λi,aψa(xi; si)

2 density of states n(r) =
∑

a fa |ψa(r)|2

3 In the Schrödinger equation the exact Coulomb interaction is substituted
with an effective potential V0(r) = VI(r) + VH(r) + Vxc(r)

Hohenberg-Kohn theorem

∃ one-to-one correspondence n(r)↔ V0(r) =⇒ V0(r) = V0(r)[n]

∃! a functional E[n] : E0 = minnE[n]

The high-dimensional Schrödinger equation translates into a set of coupled
non-linear low-dimensional self-consistent Kohn-Sham (KS) equation

∀ a solve ĤKSψa(r) =

(
− ~2

2m
∇2 + V0(r)

)
ψa(r) = εaψa(r)

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 6

DFT self-consistent field cycle

Initial guess
for charge density

nstart(r)

Compute discretized
Kohn-Sham
equations

Solve a set of
eigenproblems

P(`)
k1
. . .P(`)

kN

Compute new
charge density

n(`)(r)

Converged?

|n(`) − n(`−1)| < η

OUTPUT
Electronic
structure,
. . .

No

Yes

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 7

Zoo of methods

LDA
GGA

LDA + U
Hybrid functionals
GW-approximation

Plane waves
Localized basis set
Real space grids
Green functions

All-electron
Pseudo-potential

Shape approximations
Full-potential

Spin polarized p calculations

Finite differences
Non-relaticistic eqs.

Scalar-relativistic approx,
Spin-orbit coupling

Dirac equation

(
− ~2

2m∇
2 + V0(r)

)
ψa(r) = εaψa(r)

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 8

Introduction to FLAPW
LAPW basis set

ψa(r) =

NG∑
G

cG,iϕG(r) i = (k, ν)
k Bloch vector
ν band index

ϕG(r) =


ei(k+Gt)r INT∑
`,m

[
Aa,G
(l,m)ul,a (r) + Ba,G

(l,m)u̇l,a (r)
]

Yl,m (r̂a) ath MT

boundary conditions

Continuity of wavefunction and its
derivative at MT boundary

⇓
Aa,G
(l,m) and Ba,G

(l,m)

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 9

Hamiltonian and Overlap matrices
Operatorial form

(H)G′,G =
∑

a

∫∫
ϕ∗G′(r)ĤKSϕG(r)dr, (S)G′,G =

∑
a

∫∫
ϕ∗G′(r)ϕG(r)dr.

Entrywise form

(S)G′,G =
∑

a

∑
L=(l,m)

(
Aa,G′

L

)∗
Aa,G

L +
(

Ba,G′

L

)∗
Ba,G

L ‖u̇l,a‖2

(H)G′,G =
∑

a

∑
L′,L

((
Aa,G′

L′

)∗
T [AA]

L′,L;a Aa,G
L

)
+
((

Aa,G′

L′

)∗
T [AB]

L′,L;a Ba,G
L

)
+
((

Ba,G′

L′

)∗
T [BA]

L′,L;a Aa,G
L

)
+
((

Ba,G′

L′

)∗
T [BB]

L′,L;a Ba,G
L

)
.

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 10

Hamiltonian and Overlap matrices

Matrix form

H =

NA∑
a=1

AH
a T [AA]

a Aa︸ ︷︷ ︸
HAA

+ AH
a T [AB]

a Ba + BH
a T [BA]

a Aa + BH
a T [BB]

a Ba︸ ︷︷ ︸
HAB+BA+BB

S =

NA∑
a=1

AH
a Aa︸ ︷︷ ︸

SAA

+

NA∑
a=1

BH
a U̇H

a U̇aBa︸ ︷︷ ︸
SBB

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 11

Constructing SAA
An example of memory layout re-structuring

SAA =

NA∑
a=1

AH
a Aa.

1: for a := 1→ NA do
2: SAA = AH

a Aa . (zherk: 4NLN2
G Flops)

3: end for

NG

NL A1

A2

.

.

.

ANA

A∗

NG

NANL

1: SAA = AH
? A? . (zherk: 4NANLN2

G Flops)

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 12

Constructing HAB+BA+BB
An example of algorithm re-structuring

HAB+BA+BB =

NA∑
a=1

BH
a (T [BA]

a Aa) + (AH
a T [AB]

a)Ba +

1
2

BH
a (T [BB]

a Ba) +
1
2

(BH
a T [BB]

a)Ba

=

NA∑
a=1

BH
a (T [BA]

a Aa +
1
2

T [BB]
a Ba) +

(AH
a T [AB]

a +
1
2

BH
a T [BB]

a)Ba

1: for a := 1→ NA do
2: Za = T[BA]

a Aa . (zgemm: 8N2
LNG Flops)

3: Za = Za + 1
2 T[BB]

a Ba . (zhemm: 8N2
LNG Flops)

4: Stack Za to Z? and Ba to B?

5: end for
6: H = ZH

? B? + BH
? Z? . (zher2k: 8NANLN2

G Flops)
JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 13

Stripped HSDLA algorithm for H and S

1: Create A, B
2: // HAB+BA+BB
3: for a := 1→ NA do
4: Za = T[BA]

a Aa . (zgemm: 8N2
LNG Flops)

5: Za = Za + 1
2 T[BB]

a Ba . (zhemm: 8N2
LNG Flops)

6: end for
7: H = ZH B + BH Z . (zher2k: 8NANLN2

G Flops)
8: // S
9: S = AH A . (zherk: 4NANLN2

G Flops)
10: B = UB . (scaling: 2NANLNG Flops)
11: S = S + BH B . (zherk: 4NANLN2

G Flops)
12: // HAA
13: for a := 1→ NA do
14: try:
15: Ca = Cholesky(T[AA]

a) . (zpotrf: 4
3 N3

L Flops)
16: success:
17: Ya = CH

a Aa . (ztrmm: 4N2
LNG Flops)

18: failure:
19: Xa = T[AA]

a Aa . (zhemm: 8N2
LNG Flops)

20: end for
21: H = H + AH

¬HPDX¬HPD . (zgemm: 8NA¬HPD
NLN2

G Flops)

22: H = H + YH
HPDYHPD . (zherk: 4NAHPD

NLN2
G Flops)

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 14

Previous multi-core results

NaCl (Kmax = 4.0)
IvyBridge Haswell

HSDLA FLEUR × HSDLA FLEUR ×

1 core 31.53 48.31 1.53 19.00 47.41 2.50
2 cores 16.10 24.58 1.53 9.98 24.95 2.50
1 CPU 3.90 6.21 1.59 2.25 5.00 2.22
2 CPUs 2.61 5.20 1.99 1.93 4.03 2.09

TiO2 (Kmax = 3.6)
IvyBridge Haswell

HSDLA FLEUR × HSDLA FLEUR ×

1 core 175.53 256.15 1.46 106.56 259.91 2.44
2 cores 86.68 127.90 1.48 53.48 131.21 2.45
1 CPU 19.63 29.35 1.50 10.63 25.95 2.44
2 CPUs 12.25 21.50 1.76 7.55 16.76 2.22

Table: Scalability of HSDLA and FLEUR: execution times in minutes on Haswell
(12 cores / CPU) and IvyBridge (10 cores / CPU); speedups of HSDLA over FLEUR
in bold.

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 15

Topic

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 16

Porting to heterogeneous architectures

Re-wrote the generation of H and S in terms of standardized libraries

Reached a speedup of around 2×
Can one exploit this useful excercize in code modernization beyond the
speed obtained?

Kernels-based algorithms go a long way

BLAS is the first numerical library ported to every new architecture

On paper: quick and easy port to other architectures
The natural questions are:

Can one port to CPU+GPU with minimal modifications?
How far can one get in terms of performance improvements?

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 17

Porting to heterogeneous architectures

Re-wrote the generation of H and S in terms of standardized libraries

Reached a speedup of around 2×
Can one exploit this useful excercize in code modernization beyond the
speed obtained?

Kernels-based algorithms go a long way

BLAS is the first numerical library ported to every new architecture

On paper: quick and easy port to other architectures
The natural questions are:

Can one port to CPU+GPU with minimal modifications?
How far can one get in terms of performance improvements?

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 17

Porting to heterogeneous architectures
Back-of-the-envelope analysis

5 lines of the algorithm constitute 97% of flops

Correspond to BLAS-3 operations (gemm, herk, her2k)

High arithmetic intensity and should fit GPUs well

First step: offload these routine calls
All 5 are BLAS kernels. Can we use some library?

cuBLAS

cuBLAS-XT

MAGMA
BLASX

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 18

Porting to heterogeneous architectures
Back-of-the-envelope analysis

5 lines of the algorithm constitute 97% of flops

Correspond to BLAS-3 operations (gemm, herk, her2k)

High arithmetic intensity and should fit GPUs well

First step: offload these routine calls
All 5 are BLAS kernels. Can we use some library?

cuBLAS

cuBLAS

cuBLAS-XT
MAGMA

MAGMA

BLASX

BLASX

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 18

Porting to heterogeneous architectures
Back-of-the-envelope analysis

5 lines of the algorithm constitute 97% of flops

Correspond to BLAS-3 operations (gemm, herk, her2k)

High arithmetic intensity and should fit GPUs well

First step: offload these routine calls
All 5 are BLAS kernels. Can we use some library?

cuBLAS
cuBLAS-XT
MAGMA
BLASX

BLASX

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 18

Porting to heterogeneous architectures
Back-of-the-envelope analysis

5 lines of the algorithm constitute 97% of flops

Correspond to BLAS-3 operations (gemm, herk, her2k)

High arithmetic intensity and should fit GPUs well

First step: offload these routine calls
All 5 are BLAS kernels. Can we use some library?

cuBLAS
cuBLAS-XT
MAGMA
BLASX

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 18

Porting to heterogeneous architectures
Additional code?

3 x wrappers around the BLAS calls:

void gpu_zgemm_(char *transa, char *transb, int *m, int *n, int *k,
std::complex<double> *alpha, std::complex<double> *A, int *lda,
std::complex<double> *B, int *ldb,
std::complex<double> *beta, std::complex<double> *C, int *ldc)

{
cublasOperation_t cu_transa = transa[0] == ’N’ ? CUBLAS_OP_N :

transa[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasOperation_t cu_transb = transb[0] == ’N’ ? CUBLAS_OP_N :

transb[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasXtZgemm(handle, cu_transa, cu_transb, *m, *n, *k,

(cuDoubleComplex *)alpha, (cuDoubleComplex *)A, *lda,
(cuDoubleComplex *)B, *ldb,

(cuDoubleComplex *)beta, (cuDoubleComplex *)C, *ldc);
}

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 19

Porting to heterogeneous architectures
Additional code?

3x wrappers (zgemm, zherk, zher2k)

Init and cleanup of cuda runtime and devices
Get #devices, initialize devices, create handlers, ...

Destroy handlers, free devices, ...

Allocate data in page-locked memory
Avoid “hidden” copies

Fast data transfer

Only around 100 lines of additional code

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 20

Porting to heterogeneous architectures
Additional code?

3x wrappers (zgemm, zherk, zher2k)

Init and cleanup of cuda runtime and devices
Get #devices, initialize devices, create handlers, ...

Destroy handlers, free devices, ...

Allocate data in page-locked memory
Avoid “hidden” copies

Fast data transfer

Only around 100 lines of additional code

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 20

Topic

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 21

Experimental results

Sandy Bridge:
CPU: E5-2650, 2 x 8core, 2.0GHz, 64GBs RAM

2 Nvidia Tesla K20X

Peak performance: 256 GFs/s + 2 x 1.3 TFs/s

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 22

Experimental results
Test case 1: NaCl (NA = 512, NL = 49, NG = [2256 − 9273])

 0

 30

 60

 90

 120

 150

 180

 210

 2.5 3 3.5 4

2.76x

4.04x

T
im

e
 (

 s
e

c
o

n
d

s
)

Kmax

CPU
CPU / 1 GPU
CPU / 2 GPUs

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 23

Experimental results
Test case 2: AuAg (NA = 108, NL = 121, NG = [3275 − 13379])

 0

 30

 60

 90

 120

 150

 180

 210

 240

 2.5 3 3.5 4

3.03x

4.96x

T
im

e
 (

 s
e

c
o

n
d

s
)

Kmax

CPU
CPU / 1 GPU
CPU / 2 GPUs

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 24

Topic

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 25

Conclusions and Future Work

Conclusions

Modernizing algorithm structure of legacy code is critical

Layered design built on top of standardized libraries

Increase in performance

(Almost) free lunch⇒ performance portability

Case of FLEUR: up to 12 × speedup

Future Work:

Hybrid for zgemm, zherk, zher2k

Experiments on Jureca (4 GPU devices)

Apply the same methodology to other Materials Science
codes

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 26

Conclusions and Future Work

Conclusions

Modernizing algorithm structure of legacy code is critical

Layered design built on top of standardized libraries

Increase in performance

(Almost) free lunch⇒ performance portability

Case of FLEUR: up to 12 × speedup

Future Work:

Hybrid for zgemm, zherk, zher2k

Experiments on Jureca (4 GPU devices)

Apply the same methodology to other Materials Science
codes

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 26

Thank you for your attention!

Details on the original HSDLA:
“High-performance generation of the Hamiltonian and Overlap matrices in FLAPW
methods.” Edoardo Di Napoli, Elmar Peise, Markus Hrywniak and Paolo Bientinesi.
Accepted for publication in Comp. Phys. Comm. [arXiv:1602.06589]

“Hybrid CPU-GPU generation of the Hamiltonian and Overlap matrices in FLAPW
methods.” Diego Fabregat-Traver, Davor Davidović, Markus Höhnerbach, Edoardo Di
Napoli.
Accepted for publication in LNCS. [arXiv:1611.00606]

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 27

	The FLAPW method & FLEUR code
	An exercise in performance portability
	Experimental results
	Conclusions

