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HPC generation of the Hamiltonian
and Overlap matrices in DFT
methods based on linearized and
augmented plane waves
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Motivation
Code modernization

Legacy codes in Materials Science have grown with focus on
functionality

Frequent problems:
Codes lacks modularity, encapsulation, code reuse, ...
Codes are often a direct translation of mathematical formulas

Problems get exacerbated with recent shift to heterogeneous
architectures

“Modernize or perish”
Yes, it is costly
Yes, it is necessary but benefits are substantial
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Goal
Performance portability

In general

Re-engineering the software by re-thinking the algorithms;

Modular design, clear layering and interfaces;

Bottom layers: standardized and highly optimized libraries.

In this talk:

the FLEUR code as use case

Modernize a portion of the code that takes about 40% of the
computation

Required an important initial effort

We now give evidence of performance portability to
heterogeneous CPU + GPU architectures
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Outline

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions
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Density Functional Theory (DFT)
1 Φ(x1; s1, x2; s2, . . . , xn; sn) =⇒ Λi,aψa(xi; si)

2 density of states n(r) =
∑

a fa |ψa(r)|2

3 In the Schrödinger equation the exact Coulomb interaction is substituted
with an effective potential V0(r) = VI(r) + VH(r) + Vxc(r)

Hohenberg-Kohn theorem

∃ one-to-one correspondence n(r)↔ V0(r) =⇒ V0(r) = V0(r)[n]

∃! a functional E[n] : E0 = minnE[n]

The high-dimensional Schrödinger equation translates into a set of coupled
non-linear low-dimensional self-consistent Kohn-Sham (KS) equation

∀ a solve ĤKSψa(r) =

(
− ~2

2m
∇2 + V0(r)

)
ψa(r) = εaψa(r)
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DFT self-consistent field cycle

Initial guess
for charge density

nstart(r)

Compute discretized
Kohn-Sham
equations

Solve a set of
eigenproblems

P(`)
k1
. . .P(`)

kN

Compute new
charge density

n(`)(r)

Converged?

|n(`) − n(`−1)| < η

OUTPUT
Electronic
structure,
. . .

No

Yes

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 7



Zoo of methods

LDA
GGA

LDA + U
Hybrid functionals
GW-approximation

Plane waves
Localized basis set
Real space grids
Green functions

All-electron
Pseudo-potential

Shape approximations
Full-potential

Spin polarized p calculations

Finite differences
Non-relaticistic eqs.

Scalar-relativistic approx,
Spin-orbit coupling

Dirac equation

(
− ~2

2m∇
2 + V0(r)

)
ψa(r) = εaψa(r)
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Introduction to FLAPW
LAPW basis set

ψa(r) =

NG∑
G

cG,iϕG(r) i = (k, ν)
k Bloch vector
ν band index

ϕG(r) =


ei(k+Gt)r INT∑
`,m

[
Aa,G
(l,m)ul,a (r) + Ba,G

(l,m)u̇l,a (r)
]

Yl,m (r̂a) ath MT

boundary conditions

Continuity of wavefunction and its
derivative at MT boundary

⇓
Aa,G
(l,m) and Ba,G

(l,m)
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Hamiltonian and Overlap matrices
Operatorial form

(H)G′,G =
∑

a

∫∫
ϕ∗G′(r)ĤKSϕG(r)dr, (S)G′,G =

∑
a

∫∫
ϕ∗G′(r)ϕG(r)dr.

Entrywise form

(S)G′,G =
∑

a

∑
L=(l,m)

(
Aa,G′

L

)∗
Aa,G

L +
(

Ba,G′

L

)∗
Ba,G

L ‖u̇l,a‖2

(H)G′,G =
∑

a

∑
L′,L

((
Aa,G′

L′

)∗
T [AA]

L′,L;a Aa,G
L

)
+
((

Aa,G′

L′

)∗
T [AB]

L′,L;a Ba,G
L

)
+
((

Ba,G′

L′

)∗
T [BA]

L′,L;a Aa,G
L

)
+
((

Ba,G′

L′

)∗
T [BB]

L′,L;a Ba,G
L

)
.
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Hamiltonian and Overlap matrices

Matrix form

H =

NA∑
a=1

AH
a T [AA]

a Aa︸ ︷︷ ︸
HAA

+ AH
a T [AB]

a Ba + BH
a T [BA]

a Aa + BH
a T [BB]

a Ba︸ ︷︷ ︸
HAB+BA+BB

S =

NA∑
a=1

AH
a Aa︸ ︷︷ ︸

SAA

+

NA∑
a=1

BH
a U̇H

a U̇aBa︸ ︷︷ ︸
SBB
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Constructing SAA
An example of memory layout re-structuring

SAA =

NA∑
a=1

AH
a Aa.

1: for a := 1→ NA do
2: SAA = AH

a Aa . (zherk: 4NLN2
G Flops)

3: end for

NG

NL A1

A2

.

.

.

ANA

A∗

NG

NANL

1: SAA = AH
? A? . (zherk: 4NANLN2

G Flops)
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Constructing HAB+BA+BB
An example of algorithm re-structuring

HAB+BA+BB =

NA∑
a=1

BH
a (T [BA]

a Aa) + (AH
a T [AB]

a )Ba +

1
2

BH
a (T [BB]

a Ba) +
1
2

(BH
a T [BB]

a )Ba

=

NA∑
a=1

BH
a (T [BA]

a Aa +
1
2

T [BB]
a Ba) +

(AH
a T [AB]

a +
1
2

BH
a T [BB]

a )Ba

1: for a := 1→ NA do
2: Za = T[BA]

a Aa . (zgemm: 8N2
LNG Flops)

3: Za = Za + 1
2 T[BB]

a Ba . (zhemm: 8N2
LNG Flops)

4: Stack Za to Z? and Ba to B?

5: end for
6: H = ZH

? B? + BH
? Z? . (zher2k: 8NANLN2

G Flops)
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Stripped HSDLA algorithm for H and S

1: Create A, B
2: // HAB+BA+BB
3: for a := 1→ NA do
4: Za = T[BA]

a Aa . (zgemm: 8N2
LNG Flops)

5: Za = Za + 1
2 T[BB]

a Ba . (zhemm: 8N2
LNG Flops)

6: end for
7: H = ZH B + BH Z . (zher2k: 8NANLN2

G Flops)
8: // S
9: S = AH A . (zherk: 4NANLN2

G Flops)
10: B = UB . (scaling: 2NANLNG Flops)
11: S = S + BH B . (zherk: 4NANLN2

G Flops)
12: // HAA
13: for a := 1→ NA do
14: try:
15: Ca = Cholesky(T[AA]

a ) . (zpotrf: 4
3 N3

L Flops)
16: success:
17: Ya = CH

a Aa . (ztrmm: 4N2
LNG Flops)

18: failure:
19: Xa = T[AA]

a Aa . (zhemm: 8N2
LNG Flops)

20: end for
21: H = H + AH

¬HPDX¬HPD . (zgemm: 8NA¬HPD
NLN2

G Flops)

22: H = H + YH
HPDYHPD . (zherk: 4NAHPD

NLN2
G Flops)
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Previous multi-core results

NaCl (Kmax = 4.0)
IvyBridge Haswell

HSDLA FLEUR × HSDLA FLEUR ×

1 core 31.53 48.31 1.53 19.00 47.41 2.50
2 cores 16.10 24.58 1.53 9.98 24.95 2.50
1 CPU 3.90 6.21 1.59 2.25 5.00 2.22
2 CPUs 2.61 5.20 1.99 1.93 4.03 2.09

TiO2 (Kmax = 3.6)
IvyBridge Haswell

HSDLA FLEUR × HSDLA FLEUR ×

1 core 175.53 256.15 1.46 106.56 259.91 2.44
2 cores 86.68 127.90 1.48 53.48 131.21 2.45
1 CPU 19.63 29.35 1.50 10.63 25.95 2.44
2 CPUs 12.25 21.50 1.76 7.55 16.76 2.22

Table: Scalability of HSDLA and FLEUR: execution times in minutes on Haswell
(12 cores / CPU) and IvyBridge (10 cores / CPU); speedups of HSDLA over FLEUR
in bold.

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 15



Topic

The FLAPW method & FLEUR code

An exercise in performance portability

Experimental results

Conclusions

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 16



Porting to heterogeneous architectures

Re-wrote the generation of H and S in terms of standardized libraries

Reached a speedup of around 2×
Can one exploit this useful excercize in code modernization beyond the
speed obtained?

Kernels-based algorithms go a long way

BLAS is the first numerical library ported to every new architecture

On paper: quick and easy port to other architectures
The natural questions are:

Can one port to CPU+GPU with minimal modifications?
How far can one get in terms of performance improvements?
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Porting to heterogeneous architectures
Back-of-the-envelope analysis

5 lines of the algorithm constitute 97% of flops

Correspond to BLAS-3 operations (gemm, herk, her2k)

High arithmetic intensity and should fit GPUs well

First step: offload these routine calls
All 5 are BLAS kernels. Can we use some library?

cuBLAS

cuBLAS-XT

MAGMA
BLASX
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Porting to heterogeneous architectures
Additional code?

3 x wrappers around the BLAS calls:

void gpu_zgemm_( char *transa, char *transb, int *m, int *n, int *k,
std::complex<double> *alpha, std::complex<double> *A, int *lda,
std::complex<double> *B, int *ldb,
std::complex<double> *beta, std::complex<double> *C, int *ldc )

{
cublasOperation_t cu_transa = transa[0] == ’N’ ? CUBLAS_OP_N :

transa[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasOperation_t cu_transb = transb[0] == ’N’ ? CUBLAS_OP_N :

transb[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasXtZgemm( handle, cu_transa, cu_transb, *m, *n, *k,

(cuDoubleComplex *)alpha, (cuDoubleComplex *)A, *lda,
(cuDoubleComplex *)B, *ldb,

(cuDoubleComplex *)beta, (cuDoubleComplex *)C, *ldc );
}

JLESC, Kobe, December 1st 2016 Edoardo di Napoli Folie 19



Porting to heterogeneous architectures
Additional code?

3x wrappers (zgemm, zherk, zher2k)

Init and cleanup of cuda runtime and devices
Get #devices, initialize devices, create handlers, ...

Destroy handlers, free devices, ...

Allocate data in page-locked memory
Avoid “hidden” copies

Fast data transfer

Only around 100 lines of additional code
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Experimental results

Sandy Bridge:
CPU: E5-2650, 2 x 8core, 2.0GHz, 64GBs RAM

2 Nvidia Tesla K20X

Peak performance: 256 GFs/s + 2 x 1.3 TFs/s
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Experimental results
Test case 1: NaCl (NA = 512, NL = 49, NG = [2256 − 9273])
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Experimental results
Test case 2: AuAg (NA = 108, NL = 121, NG = [3275 − 13379])
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Conclusions and Future Work

Conclusions

Modernizing algorithm structure of legacy code is critical

Layered design built on top of standardized libraries

Increase in performance

(Almost) free lunch⇒ performance portability

Case of FLEUR: up to 12 × speedup

Future Work:

Hybrid for zgemm, zherk, zher2k

Experiments on Jureca (4 GPU devices)

Apply the same methodology to other Materials Science
codes
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Thank you for your attention!

Details on the original HSDLA:
“High-performance generation of the Hamiltonian and Overlap matrices in FLAPW
methods.” Edoardo Di Napoli, Elmar Peise, Markus Hrywniak and Paolo Bientinesi.
Accepted for publication in Comp. Phys. Comm. [arXiv:1602.06589]

“Hybrid CPU-GPU generation of the Hamiltonian and Overlap matrices in FLAPW
methods.” Diego Fabregat-Traver, Davor Davidović, Markus Höhnerbach, Edoardo Di
Napoli.
Accepted for publication in LNCS. [arXiv:1611.00606 ]
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