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A new method (“explosive immunization”) is proposed for immunization and targeted destruction of
networks. It combines the explosive percolation (EP) paradigm with the idea of maintaining a fragmented
distribution of clusters. The ability of each node to block the spread of an infection (or to prevent the
existence of a large cluster of connected nodes) is estimated by a score. The algorithm proceeds by first
identifying low score nodes that should not be vaccinated or destroyed, analogously to the links selected in
EP if they do not lead to large clusters. As in EP, this is done by selecting the worst node (weakest blocker)
from a finite set of randomly chosen “candidates.” Tests on several real-world and model networks suggest
that the method is more efficient and faster than any existing immunization strategy. Because of the latter
property it can deal with very large networks.
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Network robustness is a major theme in complex-
systems theory that has attracted much attention in recent
years [1]. Two specific problems are immunization of
networks against epidemic spreading (of infection diseases,
computer viruses, or malicious rumors), and the destruction
of networks by targeted attacks. At first sight these two
look completely different, but they can actually be mapped
onto each other. The key observation is that infections
spreading in a population use the network of contacts
between hosts for their spread. Accordingly, from the
viewpoint of the infection, immunization corresponds to
an attack that destroys the network on which it can spread.
Vaccination of hosts (network nodes) is often the most
effective way to prevent large epidemics. Other strategies
include manipulating the network topology [2–4] or intro-
ducing heterogeneity in transmission of the infection [5–7].
The main task in both cases is to find those nodes

(“blockers”) whose removal is most efficient in destroying
connectivity. Important blockers (“superblockers”) are
often assumed [8] to be equivalent to “superspreaders,”
i.e., the most efficient nodes in spreading information,
supplies, marketing strategies, or technological innova-
tions. Identifying superspreaders is the subject of a vast
literature [1] but, as pointed out in, e.g., Ref. [9], identify-
ing superblockers is not the same as finding superspreaders.
Indeed, a node in a densely connected core is in general a
good spreader [10], but it is in general a very poor blocker,
since the infection can easily find ways to go around it.
Here we devise a strategy that identifies superblockers.

Vaccinating such nodes provides an efficient way to
fragment the network and reduce the possibility of large
epidemic outbreaks. We focus on “static” immunization,
which aims at fragmenting the network before a possible
outbreak occurs (“dynamical” immunization strategies

where one tries to contain an ongoing epidemic were
studied, for instance, in [11]). In our approach, the network
consists of N nodes out of which qN are vaccinated; the
rest are left susceptible to the infection. The size of an
invasion depends on the fraction q of vaccinated nodes, the
type of epidemic (e.g., Susceptible-Infected-Removed or
Susceptible-Infected-Susceptible [12]), and its virulence.
However, the maximum fraction of nodes infected at any
time is always bounded by the relative size SðqÞ of the
largest cluster of susceptible nodes, GðqÞ. Keeping SðqÞ as
small as possible therefore ensures that epidemic outbreaks
of any type are as small as they can be for a vaccination
level q [8,13]. For large networks, N → ∞, the aim of
immunization is to fragment them so that SðqÞ ¼ 0 [8].
The immunization threshold qc is defined as the smallest
q-value at which SðqÞ ¼ 0. Although qc is not well
defined for finite N, it can be estimated reliably. Our
algorithm deteriorates only when the network is too small
(in this case, however, an extensive search of the optimal
solution can be performed). In general, the smaller the qc,
the more effective the corresponding strategy, since the
epidemic can be prevented by vaccinating a smaller set
of nodes.
The identification of superspreaders is in general an

NP-complete problem [14], and most likely this is also true
for finding superblockers. Therefore, heuristic approaches
have to be used. Typically a score is assigned to each
node using local [15,16] or global [8,13,17] properties.
In contrast to most previous papers, we use an “inverse”
[13] strategy. We start from a configuration where all nodes
are considered as potentially “dangerous” and are thereby
virtually vaccinated (q ¼ 1); then, increasingly dangerous
nodes are progressively “unvaccinated” (i.e., made suscep-
tible). This is directly related to the concept of explosive
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percolation (EP) proposed by Achlioptas et al. [18,19]. EP
has been discussed in a large number of papers because of
its very unusual threshold behavior [20]. It is reminiscent of
a wide range of explosive (i.e., strongly discontinuous)
phenomena in natural processes like social contagion [21],
generalized epidemics [22–24], k-core percolation [25],
interdependent networks [26,27], synchronization [28–31],
or jamming [32] but so far no application of EP had been
proposed. To our knowledge, immunization is the first
context where EP is practically used.
Two other ingredients are also essential to make our

method fast and efficient. (i) We use two different schemes
for q > qc and q < qc, which both combine local and
quasiglobal information. (ii) We use the fast Newman-Ziff
algorithm [33] to identify clusters of susceptible nodes. In
addition, we use a number of heuristic tricks that are
described below.
In the following we test the performance of explosive

immunization (EI) for both real-world and model networks.
Overall, it gives the smallest values of SðqÞ (although other
strategies may locally perform better for specific q-values).
Moreover, it gave in all cases by far the lowest values of qc
compared to all other strategies, except for the very recent
message passing algorithms of [34,35]. Following the
mainstream in network studies, we focused on SðqÞ, which
corresponds to outbreaks starting in GðqÞ. However, out-
breaks can also start in any other cluster. An improved
success measure S̄ðqÞ can be indirectly defined from the
average number of infected sites hninfi ¼ N

P

iS
2
i ðqÞ≡

NS̄2ðqÞ, where SiðqÞ denote the sizes of all clusters,
ordered from the largest to the smallest one [S1ðqÞ≡
SðqÞ]. If this is used, our algorithm turns out to be yet more
efficient, and is optimal even when SðqÞ might suggest that
it is not (see Supplemental Material (SM) [36]). In addition,
our algorithm is also extremely fast: Its time complexity is
linear in N up to logarithms.
The method.—We adopt a recursive strategy. Given a

configuration with a mixture of vaccinated and susceptible
nodes, m candidates are randomly chosen among the
vaccinated ones and the least dangerous (i.e., the weakest
blocker) is unvaccinated (we use typically m ∼ 103 [37]).
The selection process is based on a node score quantifying
its blocking ability. The guiding intuition is that harmless
nodes should be identified on the basis of the size of
the cluster of susceptible nodes they would join if unvacci-
nated (these clusters should be kept small) and the local
effective connectivity which measures their potential
danger if made susceptible. As the relative importance
of these two ingredients is significantly different below and
above the immunization threshold, we use two different
scores. The details of both definitions were obtained
by a mix of heuristic arguments and trial and error.
They should not be considered as essential, and indeed
very similar results were obtained by different Ansätze

within the same spirit; see [36].

The first score, used in the large-q region, is the sum of
two separate contributions,

σ
ð1Þ
i ¼ k

ðeffÞ
i þ

X

C⊂N i

ð
ffiffiffiffiffiffi

jCj
p

− 1Þ: ð1Þ

The first term k
ðeffÞ
i quantifies the potential danger due to

the effective local connectivity. It is determined self-
consistently from the bare degree ki,

k
ðeffÞ
i ¼ ki − Li −MiðfkðeffÞj gÞ: ð2Þ

The number Li of leaves is subtracted since they do not lead
anywhere. The numberMi of strong hubs is subtracted since
in our inverse protocol they will likely be vaccinated in case
of an epidemic. The analysis of several networks has led us
to identify strong hubs in a recursive way as those nodes with

k
ðeffÞ
i ≥ K for a suitably chosen cutoffK. We see that the best
results are typically obtained with K ≈ 6 for many networks,
including Erdös-Rényi (ER) networks within a wide range of

hki [36]. An example of how k
ðeffÞ
i is determined is given in

Fig. 1, where all of the above details are shown at work.
Notice that, according to Eq. (2), nodes surrounded by hubs
may play a minor blocking role for spread and can be left
unvaccinated, as compared to nodes without hub neighbors.
This idea is similar to the score used in [15], but it is opposite
of what is assumed, e.g., in page rank [1] and in the
collective influence defined in [8].
The second term on the rhs of Eq. (1) is a q-dependent

contribution that takes into account the connectivity of the
network beyond the neighbors of node i. It is based on the
size of the clusters that would be joined by turning the ith
node susceptible: N i is the set of all clusters linked to the
ith node, while jCj is the size of cluster C. A question arises
about the weight to give to this contribution. In Ref. [13],
where only the nonlocal term was considered, a

Susceptible

Vaccinated

FIG. 1. Illustration of the effective degree k
ðeffÞ
i of a generic

vaccinated node i. Shaded areas identify distinct clusters of
susceptible nodes. With reference to Eq. (2), ki ¼ 5 (see the five
neighbors of i labeled a − e); only node a is a leaf, so that Li ¼ 1.
Assuming that the cutoff K is set equal to 6, none of the nodes
a − d is a hub, while node e is a hub provided no more than one
of its neighbors is a hub itself.
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proportionality to the number jCj of nodes was assumed;
here we find better results by assuming a square root
dependence (see also [36]). Additionally, our choice
preserves a higher fragmentation, preventing relatively
large clusters of susceptibles to merge together. Finally,
the nonlocal character of this contribution is better repre-
sented by imposing that each addendum is larger than 0
only for clusters containing strictly more than one node:
this is the reason for subtracting 1; numerical simulations
confirm the validity of this choice.

As we see, using σð1Þi yields small values of qc. However,
it is not suitable to keep a small SðqÞ below qc. This is
due to the fact that below qc it leads to big jumps in SðqÞ
when two large clusters join (similar jumps were seen in
[13,34,35]). As a result of the merging process, many nodes
(at the interface between the two clusters) suddenly become
harmless without being treated as such. Accordingly, we

use a different score σð2Þi with an even stronger opposition
to cluster merging,

σ
ð2Þ
i ¼

8

>

>

<

>

>

:

∞ if GðqÞ⊄N i;

jN ij else; if arg minijN ij is unique;
jN ij þ ϵjC2j else:

ð3Þ
Here jN ij is the number of clusters in the neighborhood of
i, C2 is the second-largest cluster in N i, and ϵ is a small
positive number (its value is not important provided
ϵ ≪ 1=N). Thus we select only candidates that have the
giant cluster in their neighborhood; among these we pick
the candidate with the smallest number of neighboring
clusters, and if this is not unique, we pick the candidate for
which the second-largest neighboring cluster is the smallest

(see also [36]). The q-value where the performance of σð1Þi

deteriorates depends on the network type and its size.
However, we expect the effect to become more pronounced
below a value q� where Sðq�Þ ≈ 1=

ffiffiffiffi

N
p

, i.e., when a giant
cluster starts dominating.
Two remarks are in order about the efficiency of our

algorithm. (i) In [13] all vaccinated nodes were considered
as candidates to become susceptible during the deimmu-
nization process. This makes the algorithm very slow and
prevents its use for large networks. In our tests already
m ¼ 10 candidates gave very good results, and using
m ¼ 1000 candidates led to no noticeable degradation
[36]. (ii) When joining clusters, we used the very fast
Newman-Ziff percolation algorithm [33] that has time
complexity OðNÞ for networks with bounded degrees. It
also gives, at each moment, the size of the largest cluster,
whose determination would otherwise need most of the
CPU time. As a result, we could analyze networks with 108

nodes within hours on normal workstations.
Numerical results.—As a first test we studied ER net-

works with average degree hki ¼ 3.5 (to compare with

results from [8]). Overall, the best results are obtained by
using the scores given in Eqs. (1) and (3) (Fig. 2, solid line

in main plot). The dashed line is obtained by using σ
ð1Þ
i for

all q (the big jumps, which were also seen in [13],
correspond to joinings of big clusters). It is in general
worse than the continuous curve, except close to the jumps
(see, however, SM [36]). Finally we show in Fig. 2 also the
results obtained with the recently proposed collective
influence algorithm [8], which was hailed in as “perfect”
[38]. They are significantly worse. Our estimate qc ≤
0.1838ð1Þ is also smaller than the best estimate 0.192(9)
obtained in [8] using extremal optimization [39], and used
there as a “gold standard” for small networks (it is too slow
to be used for large networks).
As regards ER networks with other values of hki, we first

looked at hki ¼ 4, since this had been used in [13]. Our
results are similar to those of [13], but significantly better.
Next we estimated qc for a wide range of hki. By using
networks with N up to 224 we were able to obtain precise
results even for hki very close to the threshold hki ¼ 1 for
the existence of a giant cluster. The results, shown in the
inset of Fig. 2, suggest that qc satisfies for small hki a
power law

qc ∼ ðhki − 1Þ2.6; ð4Þ

where the error of the exponent is ≈� 0.2. This should be
compared to random immunization [40], qrandc ¼ ðhki −
1Þ=hki (dotted curve in the inset of Fig. 2). The difference
in the exponents reflects the fact that a nearly critical cluster
can be destroyed by removing a few “hot” nodes, whence
targeted attacks become more efficient as hki approaches
the threshold.
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FIG. 2. Relative size SðqÞ of the largest clusters against q, for
ER networks with N ¼ 106 and hki ¼ 3.5. The dashed curve
with jumps is obtained, if EI is used with score σð1Þ for all q, 2000
candidates, and K ¼ 6. The continuous curve is obtained with
σ
ð2Þ for q < q�, where Sðq�Þ ¼ 1=500. The dotted line shows

the result from [8]. The inset shows a log-log plot of qc against
hki − 1. The straight line indicates the power law
qc ∼ ðhki − 1Þ2.6, while the dotted curve shows the result for
random immunization.
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Surprisingly, for all hki values except very close to 1,
best results are obtained with K ¼ 6. This suggests that

most nodes with k
ðeffÞ
i > 6 are vaccinated at qc, independ-

ently of the average degree. This was also verified directly:
Although there is no strict relationship between effective
degree and blocking power (some hubs were not vaccinated
at qc, while some nodes that were vaccinated are not strong
hubs), there is a very strong correlation, stronger than
between actual degree and blocking power [36]. On the

other hand, very few nodes with small kðeffÞi have to be

vaccinated [about 1 per mille of the nodes with k
ðeffÞ
i ¼ 3],

in contrast to claims in [8] that weakly connected nodes are
often important blockers.
Scale-free networks.—EI also gives excellent results for

scale-free (SF) networks with node degree distribution
pk ∼ k−γ , built with both the Barabási-Albert method (fixed
γ ¼ 3) and the configuration model (γ can be tuned) [1,41].
Our results are significantly better than those obtained with
the method from [8] for both settings [Figs. 3(a) and 3(b)].
Using a single score across the entire q-range gives again
the best estimate for qc, while the two-score strategy proves
generally superior for q < qc. The jumps obtained in the
single-score strategy are less pronounced for the configu-
ration model (and thus the two-score strategy seems less
preferable), but the superiority of the two-score strategy
becomes again clear when using the improved S̄ðqÞ
discussed in [36].
Observe that the shape of SðqÞ near q ¼ 0 is concave

(convex) for large (small) γ [compare panels (a) and (b) in
Fig. 3]. The convex shape for small γ is due to the presence
of many hubs that lead to a drastic decrease of SðqÞ when
vaccinated at small q.

Real-world networks.—We have also studied the perfor-
mance of EI on a number of real-world networks, starting
from an example in which immunization plays an important
role for food security [42,43]: a network of Scottish cattle
movements [44]. The network consists of N ¼ 7228

premises (nodes) connected by E ¼ 24784 transportation
events (edges) occurring between 2005 and 2007. The node
distribution obeys a power law with exponent γ ¼ 2.37�
0.06 (maximum likelihood fit). The scenario is similar to
that of SF networks with small γ [compare panels (c) and
(b) in Fig. 3]. Again, SðqÞ decreases quite quickly because
of the presence of many well-connected nodes (e.g.,
markets and slaughterhouses), whose immunization leads
to a drastic decrease of the largest cluster. Once again we
see that our strategy using two scores is superior to the
previous approaches.
We have also studied several networks that were used

as the benchmark in previous works. This includes the
high-energy physicist collaboration network [45] and the
Internet at autonomous system level [46]. In both cases our
results are similar to, but slightly better than, those in [13]
(which were the best previous estimates). The results for
these and soil networks [47] are shown in [36].
A particularly problematic case is the airline network

[48], also studied in [2]. This is a rather small network
(N ¼ 3151 and E ¼ 27158) with a broad degree distribu-
tion (power law with γ ¼ 1.70� 0.04). The results reported

in Fig. 3(d) show that σð1Þi provides very low SðqÞ almost
everywhere. We conjecture that this is due to the unusually
small γ, which implies an abundant number of hubs. As a

result, the outcome of the score σð2Þi strongly depends on the
value of qc that is selected. It is anyway clear that a suitable
combination of them provides the optimal results.
Conclusions.—In this paper, we extend the explosive

percolation concept to propose a two-score strategy for
attacking networks that proves superior to all previously
proposed protocols. The comparison between the two
scores suggests that an everywhere optimal strategy using
a single score is unlikely to exist. This is to be traced back
to the NP completeness of the problem. Since immuniza-
tion of a network by vaccinating nodes can be regarded as a
strategy for destroying the network on which an infection
can propagate, this also gives a nearly optimal strategy for
immunization. Our explosive immunization method seems
superior, both as regards speed and minimal cost (as
measured by the number of vaccinated nodes) to all
previous strategies.
We have focused on immunization of nodes but EI can

also be applied to immunization of links. This would
provide nearly optimal quarantine strategies that might
significantly improve the typical brute-force implementa-
tion that cuts all the links between two parts of a network.
Targeted removal of links with high betweenness centrality
is the basis for one of the most efficient algorithms for
finding network communities [49]. We propose that
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FIG. 3. Relative size SðqÞ of the largest clusters in SF networks
of size N ¼ 106 obtained with (a) the Albert-Barábasi model
(γ ¼ 3) and (b) the configuration model with γ ¼ 2.5. Panels (c)
and (d) show results for the cattle and airport transportation
networks, respectively. Different line types correspond to differ-

ent algorithms: EI using scores σð1Þi and σ
ð2Þ
i (continuous line) or

only score σð1Þi (dashed line) and the algorithm in [8] (dotted line).
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explosive immunization of links should also provide a very
efficient algorithm for community detection.
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