001     8254
005     20240708132646.0
024 7 _ |2 pmid
|a pmid:12853194
024 7 _ |2 DOI
|a 10.1007/s11666-009-9377-3
024 7 _ |2 WOS
|a WOS:000273671500033
037 _ _ |a PreJuSER-8254
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
100 1 _ |a Jarligo, M.O.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB77585
245 _ _ |a Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application
260 _ _ |a Boston, Mass.
|b Springer
|c 2010
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Thermal Spray Technology
|x 1059-9630
|0 12482
|y 1
|v 19
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15 kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
653 2 0 |2 Author
|a atmospheric plasma sprayed (APS) coatings
653 2 0 |2 Author
|a gas turbine coatings
653 2 0 |2 Author
|a particle diagnostics
653 2 0 |2 Author
|a perovskite ceramics
700 1 _ |a Mack, D. E.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB61960
700 1 _ |a Mauer, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)129633
700 1 _ |a Vaßen, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)129670
700 1 _ |a Stöver, D.
|b 4
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1007/s11666-009-9377-3
|g Vol. 19
|q 19
|0 PERI:(DE-600)2047715-6
|t Journal of thermal spray technology
|v 19
|y 2010
|x 1059-9630
856 7 _ |u http://dx.doi.org/10.1007/s11666-009-9377-3
909 C O |o oai:juser.fz-juelich.de:8254
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB809
|x 0
970 _ _ |a VDB:(DE-Juel1)117161
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21