000825420 001__ 825420
000825420 005__ 20210129225320.0
000825420 0247_ $$2doi$$a10.1039/C6SM01532H
000825420 0247_ $$2ISSN$$a1744-683X
000825420 0247_ $$2ISSN$$a1744-6848
000825420 0247_ $$2Handle$$a2128/13343
000825420 0247_ $$2WOS$$aWOS:000386237000006
000825420 0247_ $$2altmetric$$aaltmetric:13022069
000825420 0247_ $$2pmid$$apmid:27714355
000825420 037__ $$aFZJ-2016-07883
000825420 041__ $$aEnglish
000825420 082__ $$a530
000825420 1001_ $$0P:(DE-Juel1)164141$$aEisenstecken, Thomas$$b0
000825420 245__ $$aBacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study
000825420 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2016
000825420 3367_ $$2DRIVER$$aarticle
000825420 3367_ $$2DataCite$$aOutput Types/Journal article
000825420 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482410923_969
000825420 3367_ $$2BibTeX$$aARTICLE
000825420 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825420 3367_ $$00$$2EndNote$$aJournal Article
000825420 520__ $$aA wide spectrum of Peritrichous bacteria undergo considerable physiological changes when they are inoculated onto nutrition-rich surfaces and exhibit a rapid and collective migration denoted as swarming. Thereby, the length of such swarmer cells and their number of flagella increases substantially. In this article, we investigated the properties of individual E. coli-type swarmer cells confined between two parallel walls via mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the swarmer cell with the multiparticle particle collision dynamics approach for the embedding fluid. E. coli-type swarmer cells are three-times longer than their planktonic counter parts, but their flagella density is comparable. By varying the wall separation, we analyze the confinement effect on the flagella arrangement, on the distribution of cells in the gap between the walls, and on the cell dynamics. We find only a weak dependence of confinement on the bundle structure and dynamics. The distribution of cells in the gap changes from a geometry-dominated behavior for very narrow to fluid-dominated behavior for wider gaps, where cells are preferentially located in the gap center for narrower gaps and stay preferentially next to one of the walls for wider gaps. Dynamically, the cells exhibit a wide spectrum of migration behaviors, depending on their flagella bundle arrangement, and ranges from straight swimming to wall rolling.
000825420 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000825420 588__ $$aDataset connected to CrossRef
000825420 7001_ $$0P:(DE-Juel1)156526$$aHu, Jinglei$$b1$$eCorresponding author
000825420 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2
000825420 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C6SM01532H$$gVol. 12, no. 40, p. 8316 - 8326$$n40$$p8316 - 8326$$tSoft matter$$v12$$x1744-6848$$y2016
000825420 8564_ $$uhttps://juser.fz-juelich.de/record/825420/files/c6sm01532h.pdf$$yOpenAccess
000825420 8564_ $$uhttps://juser.fz-juelich.de/record/825420/files/c6sm01532h.gif?subformat=icon$$xicon$$yOpenAccess
000825420 8564_ $$uhttps://juser.fz-juelich.de/record/825420/files/c6sm01532h.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825420 8564_ $$uhttps://juser.fz-juelich.de/record/825420/files/c6sm01532h.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825420 8564_ $$uhttps://juser.fz-juelich.de/record/825420/files/c6sm01532h.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825420 8564_ $$uhttps://juser.fz-juelich.de/record/825420/files/c6sm01532h.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825420 909CO $$ooai:juser.fz-juelich.de:825420$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164141$$aForschungszentrum Jülich$$b0$$kFZJ
000825420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000825420 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000825420 9141_ $$y2016
000825420 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000825420 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825420 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825420 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2015
000825420 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825420 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825420 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825420 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825420 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000825420 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825420 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825420 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825420 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825420 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000825420 980__ $$ajournal
000825420 980__ $$aVDB
000825420 980__ $$aUNRESTRICTED
000825420 980__ $$aI:(DE-Juel1)IAS-2-20090406
000825420 9801_ $$aFullTexts