000825443 001__ 825443
000825443 005__ 20240610120308.0
000825443 0247_ $$2doi$$a10.1007/s12274-016-1227-2
000825443 0247_ $$2ISSN$$a1998-0000
000825443 0247_ $$2ISSN$$a1998-0124
000825443 0247_ $$2WOS$$aWOS:000386770300026
000825443 037__ $$aFZJ-2016-07906
000825443 082__ $$a540
000825443 1001_ $$0P:(DE-Juel1)128637$$aStoica, Toma$$b0$$eCorresponding author
000825443 245__ $$aVapor transport growth of MoS$_{2}$ nuceated on SiO$_{2}$ patterns and graphene flakes
000825443 260__ $$a[S.l.]$$bTsinghua Press$$c2016
000825443 3367_ $$2DRIVER$$aarticle
000825443 3367_ $$2DataCite$$aOutput Types/Journal article
000825443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482420929_974
000825443 3367_ $$2BibTeX$$aARTICLE
000825443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825443 3367_ $$00$$2EndNote$$aJournal Article
000825443 520__ $$aVapor transport growth of atomically thin MoS2 layers on patterned substrates is investigated, as it is a step towards the self-aligned growth and formation of heterojunctions, which could be useful in future applications. Enhanced formation of MoS2 flakes at the pattern edges is observed on both the substrates examined, namely, patterned thermal SiO2 on Si(100) and graphene flakes on SiO2. The diffusion driven growth leads to the formation of MoS2 monolayers (MLs) with sizes of tens of micrometers around the edges of SiO2 patterns. The growth mode and the optical quality of the MoS2 flakes can be controlled by varying the substrate temperature. Besides the lateral growth, 3R-type pyramids are obtained on prolonging the growth. Lateral MoS2-graphene heterostructures are obtained by using graphene flakes on SiO2 as a substrate.
000825443 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000825443 588__ $$aDataset connected to CrossRef
000825443 7001_ $$0P:(DE-Juel1)164139$$aStoica, Mihai$$b1
000825443 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b2
000825443 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas$$b3
000825443 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b4
000825443 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5
000825443 7001_ $$0P:(DE-HGF)0$$aBuca, Dan$$b6
000825443 7001_ $$0FZJ:b.kardinal@fz-juelich.de / PGI-9$$aKardynał, Beata E.$$b7
000825443 773__ $$0PERI:(DE-600)2442216-2$$a10.1007/s12274-016-1227-2$$gVol. 9, no. 11, p. 3504 - 3514$$n11$$p3504 - 3514$$tNano research$$v9$$x1998-0000$$y2016
000825443 8564_ $$uhttps://juser.fz-juelich.de/record/825443/files/art_10.1007_s12274-016-1227-2.pdf$$yRestricted
000825443 8564_ $$uhttps://juser.fz-juelich.de/record/825443/files/art_10.1007_s12274-016-1227-2.gif?subformat=icon$$xicon$$yRestricted
000825443 8564_ $$uhttps://juser.fz-juelich.de/record/825443/files/art_10.1007_s12274-016-1227-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825443 8564_ $$uhttps://juser.fz-juelich.de/record/825443/files/art_10.1007_s12274-016-1227-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825443 8564_ $$uhttps://juser.fz-juelich.de/record/825443/files/art_10.1007_s12274-016-1227-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825443 8564_ $$uhttps://juser.fz-juelich.de/record/825443/files/art_10.1007_s12274-016-1227-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825443 909CO $$ooai:juser.fz-juelich.de:825443$$pVDB
000825443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich$$b3$$kFZJ
000825443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b4$$kFZJ
000825443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b5$$kFZJ
000825443 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000825443 9141_ $$y2016
000825443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825443 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825443 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO RES : 2015
000825443 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANO RES : 2015
000825443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825443 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825443 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825443 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825443 920__ $$lyes
000825443 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825443 980__ $$ajournal
000825443 980__ $$aVDB
000825443 980__ $$aUNRESTRICTED
000825443 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825443 981__ $$aI:(DE-Juel1)ER-C-1-20170209